Moore-Penrose伪逆

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

本文链接:https://blog.csdn.net/weixin_36670529/article/details/100597077

对于非方阵矩阵而言,其逆矩阵没有定义。假设在下面的问题中。我们希望通过矩阵A的左逆B来求解线性方程:

等式两边左乘左逆B后,我们得到

取决于问题的形式,我们可能无法设计一个唯一的映射A映射到B。

如果矩阵A的行数大于列数,那么上述方程可能没有解。如果矩阵A的行数小于列数,那么上述矩阵可能有多个解。

Moore-Penrose伪逆(Moore-Penrose pseudoinverse)使我们在这类问题上取得了一定进展。矩阵A的伪逆定义为:

计算伪逆的实际算法没有基于这个定义,而是使用下面的公式:

其中,矩阵U、D和V是矩阵A奇异值分解后得到的矩阵。对角矩阵D的伪逆

是其非零元素取倒数之后再转置得到的。当矩阵A的列数多于行数时,使用伪逆求解线性方程组是众多可能解法中的一种。特别地,

是方程所有可行解中欧几里得范数

最小的一个。当矩阵A的函数多于列数时,可能没有解。在这种情况下,通过伪逆得到的x使得Ax和y的欧几里得距离

最小。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 混淆矩阵(Confusion Matrix)

    混淆矩阵是ROC曲线绘制的基础,同时它也是衡量分类型模型准确度中最基本,最直观,计算最简单的方法。

    于小勇
  • 矩阵的奇异值分解

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

    于小勇
  • 主成分分析

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

    于小勇
  • 透析矩阵,由浅入深娓娓道来—高数-线性代数-矩阵

    线性代数是用来描述状态和变化的,而矩阵是存储状态和变化的信息的媒介,可以分为状态(静态)和变化(动态)信息来看待。

    周陆军
  • 数据分析与数据挖掘 - 06线性代数

    导数是高等数学中非常重要的知识点,也是人工智能的算法应用中比较常用的一个知识,这一章我们的重点就是讲解一下导数和其求导法则。首先我们来看一下导数的基本概念:函数...

    马一特
  • 数学实验(预习)

    也可以用初等变换求逆矩阵,构造一个n行2n列的矩阵(A E),并进行初等变换,A编程单位矩阵的时候,E就变成了A的逆矩阵.

    云深无际
  • 吹弹牛皮之Unity 引擎基础 - 矩阵(三)

    上图中展示了p,q两个基向量(单位向量)绕原点旋转后得到的新基向量p'和q'。根据勾股定理有:

    用户7698595
  • 吹弹牛皮之Unity 引擎基础 - 矩阵(一)

    沉迷于硬笔的练习偷懒了很长时间。过去的7月份仅仅更新了一篇文章,实在是深表遗憾。接着之前的向量篇小菜继续向下探索。谢谢大家长久来的鼓励和支持。

    用户7698595
  • 一起来学matlab-matlab学习笔记10 10_1一般运算符

    本文为matlab自学笔记的一部分,之所以学习matlab是因为其真的是人工智能无论是神经网络还是智能计算中日常使用的,非常重要的软件。也许最近其带来的一...

    DrawSky
  • 吴恩达机器学习笔记18-逆矩阵、矩阵转置

    “Linear Algebra review(optional)——Inverse and transpose”

    讲编程的高老师

扫码关注云+社区

领取腾讯云代金券