# numpy.around

`numpy.around`(a, decimals=0, out=None)[source]

Evenly round to the given number of decimals.

Parameters：

a：array_like

Input data.

decimals：int, optional

Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number of positions to the left of the decimal point.

out：ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. See `doc.ufuncs` (Section “Output arguments”) for details.

Returns：

rounded_array：ndarray

An array of the same type as a, containing the rounded values. Unless out was specified, a new array is created. A reference to the result is returned.

The real and imaginary parts of complex numbers are rounded separately. The result of rounding a float is a float.

`ndarray.round`

equivalent method

Notes：

For values exactly halfway between rounded decimal values, NumPy rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to 0.0, etc.

`np.around` uses a fast but sometimes inexact algorithm to round floating-point datatypes. For positive decimals it is equivalent to `np.true_divide(np.rint(a * 10**decimals), 10**decimals)`, which has error due to the inexact representation of decimal fractions in the IEEE floating point standard  and errors introduced when scaling by powers of ten. For instance, note the extra “1” in the following:

```>>> np.round(56294995342131.5, 3)
56294995342131.51```

If your goal is to print such values with a fixed number of decimals, it is preferable to use numpy’s float printing routines to limit the number of printed decimals:

```>>> np.format_float_positional(56294995342131.5, precision=3)
'56294995342131.5'```

The float printing routines use an accurate but much more computationally demanding algorithm to compute the number of digits after the decimal point.

Alternatively, Python’s builtin `round` function uses a more accurate but slower algorithm for 64-bit floating point values:

```>>> round(56294995342131.5, 3)
56294995342131.5
>>> np.round(16.055, 2), round(16.055, 2)  # equals 16.0549999999999997
(16.06, 16.05)```

References

1

“Lecture Notes on the Status of IEEE 754”, William Kahan, https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF

2

“How Futile are Mindless Assessments of Roundoff in Floating-Point Computation?”, William Kahan, https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf

Examples

```>>> np.around([0.37, 1.64])
array([0.,  2.])
>>> np.around([0.37, 1.64], decimals=1)
array([0.4,  1.6])
>>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value
array([0.,  2.,  2.,  4.,  4.])
>>> np.around([1,2,3,11], decimals=1) # ndarray of ints is returned
array([ 1,  2,  3, 11])
>>> np.around([1,2,3,11], decimals=-1)
array([ 0,  0,  0, 10])```

0 条评论

• ### logging.Formatter 日期格式

formatter = logging.Formatter("%(asctime)s %(levelname)s %(message)s","%Y%b%d-%H...

• ### tf.compat.v1.to_int32

版权声明：本文为博主原创文章，遵循 CC 4.0 BY-SA 版权协议，转载请附上原文出处链接和本声明...

• ### tf.contrib.layers.batch_norm

版权声明：本文为博主原创文章，遵循 CC 4.0 BY-SA 版权协议，转载请附上原文出处链接和本声明。 ...

• ### 近似模型计数，Sparse XOR约束和最小距离

摘要：计算给定布尔公式的模型数量的问题具有许多应用，包括计算定量信息流中的确定性程序的泄漏。模型计数是一个很难的#P完全问题。出于这个原因，在过去十年中已经开发...

• ### 迈向与价值一致的体系的步骤（Computers and Society）

算法(包括AI/ML)决策工件是我们决策生态系统中已建立和正在发展的一部分。他们现在是不可或缺的工具，帮助我们管理洪水般的信息，我们试图在一个复杂的世界作出有效...

• ### SAP Cloud for Customer如何实现从标准UI到自开发UI的跳转

Create a new OBN button in the toolbar of a standard UI, for example the item ta...

• ### CONSAC:基于条件样本一致性的鲁棒多模型拟合（CS CV）

本文提出了一种基于噪声测量的多参数模型的鲁棒估计方法。应用包括在人造场景中寻找多个消失点，将平面拟合到建筑图像中，或在同一序列中估计多个刚性运动。与以往的多模型...

• ### 【Codeforces】1213A - Chips Moving

版权声明：本文为博主原创文章，遵循 CC 4.0 BY-SA 版权协议，转载请附上原文出处链接和本声明。 ...

• ### dbus-python 指南

This tutorial requires Python 2.4 or up, and dbus-python 0.80rc4 or up.

### 活动推荐 