python操作mysql数据库

python操作mysql数据库

Python 标准数据库接口为 Python DB-API,Python DB-API为开发人员提供了数据库应用编程接口。

Python 数据库接口支持非常多的数据库,你可以选择适合你项目的数据库:

  • GadFly
  • mSQL
  • MySQL
  • PostgreSQL
  • Microsoft SQL Server 2000
  • Informix
  • Interbase
  • Oracle
  • Sybase

你可以访问Python数据库接口及API查看详细的支持数据库列表。

不同的数据库你需要下载不同的DB API模块,例如你需要访问Oracle数据库和Mysql数据,你需要下载Oracle和MySQL数据库模块。

DB-API 是一个规范. 它定义了一系列必须的对象和数据库存取方式, 以便为各种各样的底层数据库系统和多种多样的数据库接口程序提供一致的访问接口 。

Python的DB-API,为大多数的数据库实现了接口,使用它连接各数据库后,就可以用相同的方式操作各数据库。

Python DB-API使用流程:

  • 引入 API 模块。
  • 获取与数据库的连接。
  • 执行SQL语句和存储过程。
  • 关闭数据库连接。

什么是MySQLdb?

MySQLdb 是用于Python链接Mysql数据库的接口,它实现了 Python 数据库 API 规范 V2.0,基于 MySQL C API 上建立的。


如何安装MySQLdb?

为了用DB-API编写MySQL脚本,必须确保已经安装了MySQL。复制以下代码,并执行:

#!/usr/bin/python
# -*- coding: UTF-8 -*-

import MySQLdb

如果执行后的输出结果如下所示,意味着你没有安装 MySQLdb 模块:

Traceback (most recent call last):
  File "test.py", line 3, in <module>
    import MySQLdb
ImportError: No module named MySQLdb

安装MySQLdb,请访问 http://sourceforge.net/projects/mysql-python ,(Linux平台可以访问:https://pypi.python.org/pypi/MySQL-python)从这里可选择适合您的平台的安装包,分为预编译的二进制文件和源代码安装包。

如果您选择二进制文件发行版本的话,安装过程基本安装提示即可完成。如果从源代码进行安装的话,则需要切换到MySQLdb发行版本的顶级目录,并键入下列命令:

$ gunzip MySQL-python-1.2.2.tar.gz
$ tar -xvf MySQL-python-1.2.2.tar
$ cd MySQL-python-1.2.2
$ python setup.py build
$ python setup.py install

注意:请确保您有root权限来安装上述模块。


数据库连接

连接数据库前,请先确认以下事项:

  • 您已经创建了数据库 TESTDB.
  • 在TESTDB数据库中您已经创建了表 EMPLOYEE
  • EMPLOYEE表字段为 FIRST_NAME, LAST_NAME, AGE, SEX 和 INCOME。
  • 连接数据库TESTDB使用的用户名为 "testuser" ,密码为 "test123",你可以可以自己设定或者直接使用root用户名及其密码,Mysql数据库用户授权请使用Grant命令。
  • 在你的机子上已经安装了 Python MySQLdb 模块。
  • 如果您对sql语句不熟悉,可以访问我们的 SQL基础教程

实例:

以下实例链接Mysql的TESTDB数据库:

#!/usr/bin/python
# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标 
cursor = db.cursor()

# 使用execute方法执行SQL语句
cursor.execute("SELECT VERSION()")

# 使用 fetchone() 方法获取一条数据库。
data = cursor.fetchone()

print "Database version : %s " % data

# 关闭数据库连接
db.close()

执行以上脚本输出结果如下:

Database version : 5.0.45

创建数据库表

如果数据库连接存在我们可以使用execute()方法来为数据库创建表,如下所示创建表EMPLOYEE:

#!/usr/bin/python
# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标 
cursor = db.cursor()

# 如果数据表已经存在使用 execute() 方法删除表。
cursor.execute("DROP TABLE IF EXISTS EMPLOYEE")

# 创建数据表SQL语句
sql = """CREATE TABLE EMPLOYEE (
         FIRST_NAME  CHAR(20) NOT NULL,
         LAST_NAME  CHAR(20),
         AGE INT,  
         SEX CHAR(1),
         INCOME FLOAT )"""

cursor.execute(sql)

# 关闭数据库连接
db.close()

数据库插入操作

以下实例使用执行 SQL INSERT 语句向表 EMPLOYEE 插入记录:

#!/usr/bin/python
# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标 
cursor = db.cursor()

# SQL 插入语句
sql = """INSERT INTO EMPLOYEE(FIRST_NAME,
         LAST_NAME, AGE, SEX, INCOME)
         VALUES ('Mac', 'Mohan', 20, 'M', 2000)"""
try:
   # 执行sql语句
   cursor.execute(sql)
   # 提交到数据库执行
   db.commit()
except:
   # Rollback in case there is any error
   db.rollback()

# 关闭数据库连接
db.close()

以上例子也可以写成如下形式:

#!/usr/bin/python
# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标 
cursor = db.cursor()

# SQL 插入语句
sql = "INSERT INTO EMPLOYEE(FIRST_NAME, \
       LAST_NAME, AGE, SEX, INCOME) \
       VALUES ('%s', '%s', '%d', '%c', '%d' )" % \
       ('Mac', 'Mohan', 20, 'M', 2000)
try:
   # 执行sql语句
   cursor.execute(sql)
   # 提交到数据库执行
   db.commit()
except:
   # 发生错误时回滚
   db.rollback()

# 关闭数据库连接
db.close()

实例:

以下代码使用变量向SQL语句中传递参数:

..................................
user_id = "test123"
password = "password"

con.execute('insert into Login values("%s", "%s")' % \
             (user_id, password))
..................................

数据库查询操作

Python查询Mysql使用 fetchone() 方法获取单条数据, 使用fetchall() 方法获取多条数据。

  • fetchone(): 该方法获取下一个查询结果集。结果集是一个对象
  • fetchall():接收全部的返回结果行.
  • rowcount: 这是一个只读属性,并返回执行execute()方法后影响的行数。

实例:

查询EMPLOYEE表中salary(工资)字段大于1000的所有数据:

#!/usr/bin/python
# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标 
cursor = db.cursor()

# SQL 查询语句
sql = "SELECT * FROM EMPLOYEE \
       WHERE INCOME > '%d'" % (1000)
try:
   # 执行SQL语句
   cursor.execute(sql)
   # 获取所有记录列表
   results = cursor.fetchall()
   for row in results:
      fname = row[0]
      lname = row[1]
      age = row[2]
      sex = row[3]
      income = row[4]
      # 打印结果
      print "fname=%s,lname=%s,age=%d,sex=%s,income=%d" % \
             (fname, lname, age, sex, income )
except:
   print "Error: unable to fecth data"

# 关闭数据库连接
db.close()

以上脚本执行结果如下:

fname=Mac, lname=Mohan, age=20, sex=M, income=2000

数据库更新操作

更新操作用于更新数据表的的数据,以下实例将 TESTDB表中的 SEX 字段全部修改为 'M',AGE 字段递增1:

#!/usr/bin/python
# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接
db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

# 使用cursor()方法获取操作游标 
cursor = db.cursor()

# SQL 更新语句
sql = "UPDATE EMPLOYEE SET AGE = AGE + 1
                          WHERE SEX = '%c'" % ('M')
try:
   # 执行SQL语句
   cursor.execute(sql)
   # 提交到数据库执行
   db.commit()
except:
   # 发生错误时回滚
   db.rollback()

# 关闭数据库连接
db.close()

执行事务

事务机制可以确保数据一致性。

事务应该具有4个属性:原子性、一致性、隔离性、持久性。这四个属性通常称为ACID特性。

  • 原子性(atomicity)。一个事务是一个不可分割的工作单位,事务中包括的诸操作要么都做,要么都不做。
  • 一致性(consistency)。事务必须是使数据库从一个一致性状态变到另一个一致性状态。一致性与原子性是密切相关的。
  • 隔离性(isolation)。一个事务的执行不能被其他事务干扰。即一个事务内部的操作及使用的数据对并发的其他事务是隔离的,并发执行的各个事务之间不能互相干扰。
  • 持久性(durability)。持续性也称永久性(permanence),指一个事务一旦提交,它对数据库中数据的改变就应该是永久性的。接下来的其他操作或故障不应该对其有任何影响。

Python DB API 2.0 的事务提供了两个方法 commit 或 rollback。

实例:

# SQL删除记录语句
sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20)
try:
   # 执行SQL语句
   cursor.execute(sql)
   # 向数据库提交
   db.commit()
except:
   # 发生错误时回滚
   db.rollback()

对于支持事务的数据库, 在Python数据库编程中,当游标建立之时,就自动开始了一个隐形的数据库事务。

commit()方法游标的所有更新操作,rollback()方法回滚当前游标的所有操作。每一个方法都开始了一个新的事务。

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏A周立SpringCloud

为什么建议使用你 LocalDateTime ,而不是 Date?

来源:juejin.im/post/5d7787625188252388753eae

7010
来自专栏V社 北京社

grafana&prometheus生产级容器化监控-2:监控rocketmq

笔者为了简单快速,是直接调用rocketmq-console的ajax/http取现成数据,所以本例rocketmq-exporter的运行必须有对应的rock...

12320
来自专栏Crossin的编程教室

【Python 第75课】可迭代对象和迭代器

for 循环是我们在 Python 里非常常用的一个语法,但你有没有思考过 for 循环是怎样实现的?

10520
来自专栏Datawhale专栏

大数据处理实践!手把手实现PySpark机器学习项目-回归算法

PySpark作为工业界常用于处理大数据以及分布式计算的工具,特别是在算法建模时起到了非常大的作用。PySpark如何建模呢?这篇文章手把手带你入门PySpa...

11270
来自专栏机器学习养成记

图片相似度识别:dHash算法

之前已经介绍了aHash算法的基本原理及python实现代码(图片相似度识别:aHash算法),本次来继续介绍图片相似度识别的另一常用哈希算法——dHash。

22810
来自专栏Python工程师

Python-科学计算-pandas-01-df获取部分数据

系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3....

8230
来自专栏磐创AI技术团队的专栏

PyTorch&TensorFlow跑分对决:哪个平台运行NLP模型推理更快

开源社区的支持度、上手的难易度都是重要的参考。还有人说:学术界用PyTorch,工业界用TensorFlow。

7020
来自专栏测试游记

测试开发进阶(二十八)

进入 get_object_or_404可以看到一个解包,这样就拿到了查询集中 id=1的内容

6030
来自专栏量子位

英伟达小姐姐的Python隐藏技巧合集,推特2400赞,代码可以直接跑

常常发资源的英伟达工程师小姐姐Chip Huyen,又发射了一套Python隐藏功能合集。

8230
来自专栏猪圈子

Python学习曲线

经历长达近一个月的资源筛选过程终于结束,总共1.5T百度网盘的资源经过:去重、筛选、整理、归档之后一份粗略的Python学习曲线资源已经成型,虽然中间经历了很多...

17110

扫码关注云+社区

领取腾讯云代金券

年度创作总结 领取年终奖励