专栏首页IT技术小咖GC算法、垃圾收集器

GC算法、垃圾收集器

对象存活判断

判断对象是否存活一般有两种方式:

引用计数:每个对象有一个引用计数属性,新增一个引用时计数加1,引用释放时计数减1,计数为0时可以回收。此方法简单,无法解决对象相互循环引用的问题。

可达性分析(Reachability Analysis):从GC Roots开始向下搜索,搜索所走过的路径称为引用链。当一个对象到GC Roots没有任何引用链相连时,则证明此对象是不可用的。不可达对象。

在Java语言中,GC Roots包括:

  • 虚拟机栈中引用的对象。
  • 方法区中类静态属性实体引用的对象。
  • 方法区中常量引用的对象。
  • 本地方法栈中JNI引用的对象。

垃圾收集算法

标记 -清除算法

标记-清除”(Mark-Sweep)算法,如它的名字一样,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象。之所以说它是最基础的收集算法,是因为后续的收集算法都是基于这种思路并对其缺点进行改进而得到的。

它的主要缺点有两个:一个是效率问题,标记和清除过程的效率都不高;另外一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致,当程序在以后的运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

复制算法

“复制”(Copying)的收集算法,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。

这样使得每次都是对其中的一块进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为原来的一半,持续复制长生存期的对象则导致效率降低。

标记-压缩算法

复制收集算法在对象存活率较高时就要执行较多的复制操作,效率将会变低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。

根据老年代的特点,有人提出了另外一种“标记-整理”(Mark-Compact)算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存

分代收集算法

GC分代的基本假设:绝大部分对象的生命周期都非常短暂,存活时间短。

“分代收集”(GenerationalCollection)算法,把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记-清理”或“标记-整理”算法来进行回收。

垃圾收集器

如果说收集算法是内存回收的方法论,垃圾收集器就是内存回收的具体实现

Serial收集器

串行收集器是最古老,最稳定以及效率高的收集器,可能会产生较长的停顿,只使用一个线程去回收。新生代、老年代使用串行回收;新生代复制算法老年代标记-压缩;垃圾收集的过程中会Stop The World(服务暂停)

参数控制:-XX:+UseSerialGC 串行收集器

ParNew收集器

ParNew收集器其实就是Serial收集器的多线程版本。新生代并行,老年代串行;新生代复制算法、老年代标记-压缩

参数控制:-XX:+UseParNewGC ParNew收集器

-XX:ParallelGCThreads 限制线程数量

Parallel收集器

Parallel Scavenge收集器类似ParNew收集器,Parallel收集器更关注系统的吞吐量。可以通过参数来打开自适应调节策略,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或最大的吞吐量;也可以通过参数控制GC的时间不大于多少毫秒或者比例;新生代复制算法、老年代标记-压缩

参数控制:-XX:+UseParallelGC 使用Parallel收集器+ 老年代串行

Parallel Old 收集器

Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。这个收集器是在JDK 1.6中才开始提供

参数控制:-XX:+UseParallelOldGC 使用Parallel收集器+ 老年代并行

CMS收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用都集中在互联网站或B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。

从名字(包含“Mark Sweep”)上就可以看出CMS收集器是基于“标记-清除”算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为4个步骤,包括:

初始标记(CMS initial mark)

并发标记(CMS concurrent mark)

重新标记(CMS remark)

并发清除(CMS concurrent sweep)

其中初始标记、重新标记这两个步骤仍然需要“StopThe World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,并发标记阶段就是进行GC Roots Tracing的过程,而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。 由于整个过程中耗时最长的并发标记和并发清除过程中,收集器线程都可以与用户线程一起工作,所以总体上来说,CMS收集器的内存回收过程是与用户线程一起并发地执行。老年代收集器(新生代使用ParNew)

优点:并发收集低停顿

缺点:产生大量空间碎片、并发阶段会降低吞吐量

参数控制:-XX:+UseConcMarkSweepGC 使用CMS收集器

-XX:+ UseCMSCompactAtFullCollection Full GC后,进行一次碎片整理;整理过程是独占的,会引起停顿时间变长

-XX:+CMSFullGCsBeforeCompaction 设置进行几次Full GC后,进行一次碎片整理

-XX:ParallelCMSThreads 设定CMS的线程数量(一般情况约等于可用CPU数量)

CMS,全称Concurrent Low Pause Collector,是jdk1.4后期版本开始引入的新gc算法,在jdk5和jdk6中得到了进一步改进,它的主要适合场景是对响应时间的重要性需求大于对吞吐量的要求,能够承受垃圾回收线程和应用线程共享处理器资源,并且应用中存在比较多的长生命周期的对象的应用。CMS是用于对tenured generation的回收,也就是年老代的回收,目标是尽量减少应用的暂停时间,减少full gc发生的几率,利用和应用程序线程并发的垃圾回收线程来标记清除年老代。在我们的应用中,因为有缓存的存在,并且对于响应时间也有比较高的要求,因此希望能尝试使用CMS来替代默认的server型JVM使用的并行收集器,以便获得更短的垃圾回收的暂停时间,提高程序的响应性。

CMS收集周期

CMS并非没有暂停,而是用两次短暂停来替代串行标记整理算法的长暂停,它的收集周期是这样:

初始标记(CMS-initial-mark) -> 并发标记(CMS-concurrent-mark) -> 重新标记(CMS-remark) -> 并发清除(CMS-concurrent-sweep) ->并发重设状态等待下次CMS的触发(CMS-concurrent-reset)。

其中的1,3两个步骤需要暂停所有的应用程序线程的。第一次暂停从root对象开始标记存活的对象,这个阶段称为初始标记;第二次暂停是在并发标记之后,暂停所有应用程序线程,重新标记并发标记阶段遗漏的对象(在并发标记阶段结束后对象状态的更新导致)。第一次暂停会比较短,第二次暂停通常会比较长,并且 remark这个阶段可以并行标记。

而并发标记、并发清除、并发重设阶段的所谓并发,是指一个或者多个垃圾回收线程和应用程序线程并发地运行,垃圾回收线程不会暂停应用程序的执行,如果你有多于一个处理器,那么并发收集线程将与应用线程在不同的处理器上运行,显然,这样的开销就是会降低应用的吞吐量。Remark阶段的并行,是指暂停了所有应用程序后,启动一定数目的垃圾回收进程进行并行标记,此时的应用线程是暂停的。

CMS的young generation的回收采用的仍然是并行复制收集器,这个跟Paralle gc算法是一致的。

参数介绍

1、启用CMS:-XX:+UseConcMarkSweepGC。

2。CMS默认启动的回收线程数目是 (ParallelGCThreads + 3)/4) ,如果你需要明确设定,可以通过-XX:ParallelCMSThreads=20来设定,其中ParallelGCThreads是年轻代的并行收集线程数

3、CMS是不会整理堆碎片的,因此为了防止堆碎片引起full gc,通过会开启CMS阶段进行合并碎片选项:-XX:+UseCMSCompactAtFullCollection,开启这个选项一定程度上会影响性能,阿宝的blog里说也许可以通过配置适当的CMSFullGCsBeforeCompaction来调整性能,未实践。

4.为了减少第二次暂停的时间,开启并行remark: -XX:+CMSParallelRemarkEnabled。如果remark还是过长的话,可以开启-XX:+CMSScavengeBeforeRemark选项,强制remark之前开始一次minor gc,减少remark的暂停时间,但是在remark之后也将立即开始又一次minor gc。

5.为了避免Perm区满引起的full gc,建议开启CMS回收Perm区选项:

+CMSPermGenSweepingEnabled -XX:+CMSClassUnloadingEnabled

6.默认CMS是在tenured generation沾满68%的时候开始进行CMS收集,如果你的年老代增长不是那么快,并且希望降低CMS次数的话,可以适当调高此值:

-XX:CMSInitiatingOccupancyFraction=80

这里修改成80%沾满的时候才开始CMS回收。

7.年轻代的并行收集线程数默认是(cpu <= 8) ? cpu : 3 + ((cpu * 5) / 8),如果你希望降低这个线程数,可以通过-XX:ParallelGCThreads= N 来调整。

8.进入重点,在初步设置了一些参数后,例如:

-server -Xms1536m -Xmx1536m -XX:NewSize=256m-XX:MaxNewSize=256m -XX:PermSize=64m

-XX:MaxPermSize=64m-XX:-UseConcMarkSweepGC -XX:+UseCMSCompactAtFullCollection

-XX:CMSInitiatingOccupancyFraction=80-XX:+CMSParallelRemarkEnabled

-XX:SoftRefLRUPolicyMSPerMB=0

需要在生产环境或者压测环境中测量这些参数下系统的表现,这时候需要打开GC日志查看具体的信息,因此加上参数:

-verbose:gc -XX:+PrintGCTimeStamps-XX:+PrintGCDetails -Xloggc:/home/test/logs/gc.log

在运行相当长一段时间内查看CMS的表现情况,CMS的日志输出类似这样:

4391.322: [GC [1 CMS-initial-mark:655374K(1310720K)] 662197K(1546688K), 0.0303050 secs] [Times: user=0.02sys=0.02, real=0.03 secs]

4391.352:[CMS-concurrent-mark-start]

4391.779: [CMS-concurrent-mark:0.427/0.427 secs] [Times: user=1.24 sys=0.31, real=0.42 secs]

4391.779:[CMS-concurrent-preclean-start]

4391.821:[CMS-concurrent-preclean: 0.040/0.042 secs] [Times: user=0.13 sys=0.03,real=0.05 secs]

4391.821:[CMS-concurrent-abortable-preclean-start]

4392.511:[CMS-concurrent-abortable-preclean: 0.349/0.690 secs] [Times: user=2.02sys=0.51, real=0.69 secs]

4392.516: [GC[YG occupancy: 111001K (235968 K)]4392.516: [Rescan (parallel) , 0.0309960 secs]4392.547: [weak refsprocessing, 0.0417710 secs] [1 CMS-remark: 655734K(1310720K)]766736K(1546688K), 0.0932010 secs] [Times: user=0.17 sys=0.00, real=0.09 secs]

4392.609:[CMS-concurrent-sweep-start]

4394.310: [CMS-concurrent-sweep:1.595/1.701 secs] [Times: user=4.78 sys=1.05, real=1.70 secs]

4394.310:[CMS-concurrent-reset-start]

4394.364: [CMS-concurrent-reset:0.054/0.054 secs] [Times: user=0.14 sys=0.06, real=0.06 secs]

其中可以看到CMS-initial-mark阶段暂停了0.0303050秒,而CMS-remark阶段暂停了0.0932010秒,因此两次暂停的总共时间是0.123506秒,也就是123毫秒左右。两次短暂停的时间之和在200以下可以称为正常现象。

但是你很可能遇到两种fail引起full gc:Prommotion failed和Concurrent mode failed。

Prommotion failed的日志输出大概是这样:

[ParNew (promotion failed):320138K->320138K(353920K), 0.2365970 secs]42576.951: [CMS:1139969K->1120688K(

166784K), 9.2214860 secs]1458785K->1120688K(2520704K), 9.4584090 secs]

这个问题的产生是由于救助空间不够,从而向年老代转移对象,年老代没有足够的空间来容纳这些对象,导致一次full gc的产生。解决这个问题的办法有两种完全相反的倾向:增大救助空间、增大年老代或者去掉救助空间。增大救助空间就是调整-XX:SurvivorRatio参数,这个参数是Eden区和Survivor区的大小比值,默认是32,也就是说Eden区是 Survivor区的32倍大小,要注意Survivo是有两个区的,因此Surivivor其实占整个young genertation的1/34。调小这个参数将增大survivor区,让对象尽量在survitor区呆长一点,减少进入年老代的对象。去掉救助空间的想法是让大部分不能马上回收的数据尽快进入年老代,加快年老代的回收频率,减少年老代暴涨的可能性,这个是通过将-XX:SurvivorRatio 设置成比较大的值(比如65536)来做到。在我们的应用中,将young generation设置成256M,这个值相对来说比较大了,而救助空间设置成默认大小(1/34),从压测情况来看,没有出现prommotion failed的现象,年轻代比较大,从GC日志来看,minor gc的时间也在5-20毫秒内,还可以接受,因此暂不调整。

Concurrent mode failed的产生是由于CMS回收年老代的速度太慢,导致年老代在CMS完成前就被沾满,引起full gc,避免这个现象的产生就是调小-XX:CMSInitiatingOccupancyFraction参数的值,让CMS更早更频繁的触发,降低年老代被沾满的可能。我们的应用暂时负载比较低,在生产环境上年老代的增长非常缓慢,因此暂时设置此参数为80。在压测环境下,这个参数的表现还可以,没有出现过Concurrent mode failed。

常用的收集器组合:

新生代GC策略

年老代GC策略

说明

组合1

Serial

Serial Old

Serial和Serial Old都是单线程进行GC,特点就是GC时暂停所有应用线程。

组合2

Serial

CMS+Serial Old

CMS(Concurrent Mark Sweep)是并发GC,实现GC线程和应用线程并发工作,不需要暂停所有应用线程。另外,当CMS进行GC失败时,会自动使用Serial Old策略进行GC。

组合3

ParNew

CMS

使用-XX:+UseParNewGC选项来开启。ParNew是Serial的并行版本,可以指定GC线程数,默认GC线程数为CPU的数量。可以使用-XX:ParallelGCThreads选项指定GC的线程数。如果指定了选项-XX:+UseConcMarkSweepGC选项,则新生代默认使用ParNew GC策略。

组合4

ParNew

Serial Old

使用-XX:+UseParNewGC选项来开启。新生代使用ParNew GC策略,年老代默认使用Serial Old GC策略。

组合5

Parallel Scavenge

Serial Old

Parallel Scavenge策略主要是关注一个可控的吞吐量:应用程序运行时间 / (应用程序运行时间 + GC时间),可见这会使得CPU的利用率尽可能的高,适用于后台持久运行的应用程序,而不适用于交互较多的应用程序。

组合6

Parallel Scavenge

Parallel Old

Parallel Old是Serial Old的并行版本

组合7

G1GC

G1GC

-XX:+UnlockExperimentalVMOptions -XX:+UseG1GC #开启 -XX:MaxGCPauseMillis =50 #暂停时间目标 -XX:GCPauseIntervalMillis =200 #暂停间隔目标 -XX:+G1YoungGenSize=512m #年轻代大小 -XX:SurvivorRatio=6 #幸存区比例

本文分享自微信公众号 - IT技术小咖(IT-arch)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-08-20

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 如何保证消息不被重复消费?或者说,如何保证消息消费的幂等性?

    首先,比如 RabbitMQ、RocketMQ、Kafka,都有可能会出现消息重复消费的问题,正常。因为这问题通常不是 MQ 自己保证的,是由我们开发来保证的。...

    IT技术小咖
  • ELK日志分析方案

    1.在微服务服务器上部署Logstash,作为Shipper的角色,对微服务日志文件数据进行数据采集,将采集到的数据输出到Redis消息队列。

    IT技术小咖
  • HashMap和HashTable的不同点

    HashMap继承于AbstractMap,实现了Map、Cloneable、java.io.Serializable接口。 Hashtable继承于Dicti...

    IT技术小咖
  • JVM性能调优-你不得不懂的CMS收集器

    cwl_java
  • 面试官,不要再问我“Java 垃圾收集器”了

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 ...

    用户1161110
  • 闲谈Tomcat性能优化

    Tomcat在各位JavaWeb从业者常常就是默认的开发环境,但是Tomcat的默认配置作为生产环境,尤其是内存和线程的配置,默认都很低,容易成为性能瓶颈.

    ParkJun
  • JVM学习笔记——垃圾收集器与内存分配策略(2)

    java虚拟机规范中并没有对垃圾收集器如何实现有任何规定,因此,不同的厂商,不同版本的虚拟机所提供的垃圾收集器可能会有很大差别,这里只讨论基于JDK1.7之后的...

    用户1665735
  • 浅谈Tomcat服务器优化方法

    对于JavaWeb开发人员而言,Tomcat已成为默认的web服务器,但是在生产环境下使用Tomcat部署应用,我们如果采用Tomcat默认的配置,尤其是内存和...

    三哥
  • JVM垃圾收集器详解

    一个单线程的收集器,使用复制算法。它只会使用一条线程工作,并且在进行垃圾收集的同时,必须暂停其他所有的工作线程(Stop The Word),直到垃圾收集结束。

    Java学习录
  • 浅谈Tomcat服务器优化方法

    对于JavaWeb开发人员而言,Tomcat已成为默认的web服务器,但是在生产环境下使用Tomcat部署应用,我们如果采用Tomcat默认的配置,尤其是内存和...

    动力节点Java学院

扫码关注云+社区

领取腾讯云代金券