专栏首页腾讯云Elasticsearch Service玩转Elasticsearch routing功能
原创

玩转Elasticsearch routing功能

Elasticsearch是一个搭建在Lucene搜索引擎库基础之上的搜索服务平台。它在单机的Lucene搜索引擎库基础之上增加了分布式设计,translog等特性,增强了搜索引擎的性能,高可用性,高可扩性等。

Elasticsearch分布式设计的基本思想是Elasticsearch集群由多个服务器节点组成,集群中的一个索引分为多个分片,每个分片可以分配在不同的节点上。其中每个分片都是一个单独的功能完成的Lucene实例,可以独立地进行写入和查询服务,ES中存储的数据分布在集群分片的一个或多个上,其结构简单描述为下图。

在上面的架构图中,集群由于三个节点组成,每个节点上又与两个分片,想要读写文档就必须知道文档被分配在哪个分片上,这也正是本文要讲的routing功能的作用。

1. 工作原理

1.1 routing参数

routing参数是一个可选参数,默认使用文档的_id值,可以用在INDEX, UPDATE,GET, SEARCH, DELETE等各种操作中。在写入(包括更新)时,用于计算文档所属分片,在查询(GET请求或指定了routing的查询)中用于限制查询范围,提高查询速度。

1.2 计算方法

ES中shardId的计算公式如下:

shardId = hash(_routing) % num_primary_shards

通过该公式可以保证使用相同routing的文档被分配到同一个shard上,当然在默认情况下使用_id作为routing起到将文档均匀分布到多个分片上防止数据倾斜的作用。

1.3 routing_partition_size参数

使用了routing参数可以让routing值相同的文档分配到同一个分片上,从而减少查询时需要查询的shard数,提高查询效率。但是使用该参数容易导致数据倾斜。为此,ES还提供了一个index.routing_partition_size参数(仅当使用routing参数时可用),用于将routing相同的文档映射到集群分片的一个子集上,这样一方面可以减少查询的分片数,另一方面又可以在一定程度上防止数据倾斜。引入该参数后计算公式如下

shard_num = (hash(_routing) + hash(_id) % routing_partition_size) % num_primary_shards

1.4 源码解读

如下为计算文档归属分片的源码,从源码中我们可以看到ES的哈希算法使用的是Murmur3,取模使用的是java的floorMod

version: 6.5
path: org\elasticsearch\cluster\routing\OperationRouting.java

public static int generateShardId(IndexMetaData indexMetaData, @Nullable String id, @Nullable String routing) {
    final String effectiveRouting;
    final int partitionOffset;

    if (routing == null) {
        assert(indexMetaData.isRoutingPartitionedIndex() == false) : "A routing value is required for gets from a partitioned index";
        effectiveRouting = id; //默认使用id
    } else {
        effectiveRouting = routing;
    }

    if (indexMetaData.isRoutingPartitionedIndex()) {//使用了routing_partition_size参数
        partitionOffset = Math.floorMod(Murmur3HashFunction.hash(id), indexMetaData.getRoutingPartitionSize());
    } else {
        // we would have still got 0 above but this check just saves us an unnecessary hash calculation
        partitionOffset = 0;
    }

    return calculateScaledShardId(indexMetaData, effectiveRouting, partitionOffset);
}

private static int calculateScaledShardId(IndexMetaData indexMetaData, String effectiveRouting, int partitionOffset) {
    final int hash = Murmur3HashFunction.hash(effectiveRouting) + partitionOffset;

    // we don't use IMD#getNumberOfShards since the index might have been shrunk such that we need to use the size
    // of original index to hash documents
    return Math.floorMod(hash, indexMetaData.getRoutingNumShards()) / indexMetaData.getRoutingFactor();
}

2. 存在的问题及解决方案

2.1 数据倾斜

如前面所述,用户使用自定义routing可以控制文档的分配位置,从而达到将相似文档放在同一个或同一批分片的目的,减少查询时的分片个数,提高查询速度。然而,这也意味着数据无法像默认情况那么均匀的分配到各分片和各节点上,从而会导致各节点存储和读写压力分布不均,影响系统的性能和稳定性。对此可以从以下两个方面进行优化

  1. 使用routing_partition_size参数 如前面所述,该参数可以使routing相同的文档分配到一批分片(集群分片的子集)而不是一个分片上,从而可以从一定程度上减轻数据倾斜的问题。该参数的效果与其值设置的大小有关,当该值等于number_of_shard时,routing将退化为与未指定一样。当然该方法只能减轻数据倾斜,并不能彻底解决。
  2. 合理划分数据和设置routing值 从前面的分析,我们可以得到文档分片计算的公式,公式中的hash算法和取模算法也已经通过源码获取。因此用户在划分数据时,可以首先明确数据要划分为几类,每一类数据准备划分到哪部分分片上,再结合分片计算公式计算出合理的routing值,当然也可以在routing参数设置之前设置一个自定义hash函数来实现,从而实现数据的均衡分配。
  3. routing前使用自定义hash函数 很多情况下,用户并不能提前确定数据的分类值,为此可以在分类值和routing值之间设置一个hash函数,保证分类值散列后的值更均匀,使用该值作为routing,从而防止数据倾斜。

2.2 异常行为

ES的id去重是在分片维度进行的,之所以这样做是ES因为默认情况下使用_id作为routing值,这样id相同的文档会被分配到相同的分片上,因此只需要在分片维度做id去重即可保证id的唯一性。

然而当使用了自定义routing后,id相同的文档如果指定了不同的routing是可能被分配到不同的分片上的,从而导致同一个索引中出现两个id一样的文档,这里之所以说“可能”是因为如果不同的routing经过计算后仍然被映射到同一个分片上,去重还是可以生效的。因此这里会出现一个不稳定的情况,即当对id相同routing不同的文档进行写入操作时,有的时候被更新,有的时候会生成两个id相同的文档,具体可以使用下面的操作复现

# 出现两个id一样的情况
POST _bulk
{"index":{"_index":"routing_test","_id":"123","routing":"abc"}}
{"name":"zhangsan","age":18}
{"index":{"_index":"routing_test","_id":"123","routing":"xyz"}}
{"name":"lisi","age":22}

GET routing_test/_search

# 相同id被更新的情况
POST _bulk
{"index":{"_index":"routing_test_2","_id":"123","routing":"123"}}
{"name":"zhangsan","age":18}
{"index":{"_index":"routing_test_2","_id":"123","routing":"123456"}}
{"name":"lisi","age":22}

GET routing_test_2/_search

以上测试场景在5.6.4, 6.4.3, 6.8.2集群上均验证会出现,在7.2.1集群上没有出现(可能是id去重逻辑发生了变化,这个后续研究一下后更新)。

对于这种场景,虽然在响应行为不一致,但是由于属于未按正常使用方式使用(id相同的文档应该使用相同的routing),也属于可以理解的情况,官方文档上也有对应描述, 参考地址

3. 常规用法

3.1 文档划分及routing指定

  • 明确文档划分 使用routing是为了让查询时有可能出现在相同结果集的文档被分配到一个或一批分片上。因此首先要先明确哪些文档应该被分配在一起,对于这些文档使用相同的routing值,常规的一些自带分类信息的文档,如学生的班级属性,产品的分类等都可以作为文档划分的依据。
  • 确定各类别的目标分片 当然这一步不是必须的,但是合理设置各类数据的目标分片,让他们尽量均匀分配,可以防止数据倾斜。因此建议在使用前就明确哪一类数据准备分配在哪一个或一批分片上,然后通过计算给出这类文档的合理routing值
  • routing分布均匀 在很多场景下分类有哪些值不确定,因此无法明确划分各类数据的分片归属并计算出routing值,对于这种情况,建议可以在routing之前增加一个hash函数,让不同文档分类的值通过哈希尽量散列得更均匀一些,从而保证数据分布平衡。

3.2 routing的使用

  • 写入操作 文档的PUT, POST, BULK操作均支持routing参数,在请求中带上routing=xxx即可。使用了routing值即可保证使用相同routing值的文档被分配到一个或一批分片上。 GET my_index/_search { "query": { "terms": { "_routing": [ "user1" ] } } }
  • GET操作 对于使用了routing写入的文档,在GET时必须指定routing,否则可能导致404,这与GET的实现机制有关,GET请求会先根据routing找到对应的分片再获取文档,如果对写入使用routing的文档GET时没有指定routing,那么会默认使用id进行routing从而大概率无法获得文档。
  • 查询操作 查询操作可以在body中指定_routing参数(可以指定多个)来进行查询。当然不指定_routing也是可以查询出结果的,不过是遍历所有的分片,指定了_routing后,查询仅会对routing对应的一个或一批索引进行检索,从而提高查询效率,这也是很多用户使用routing的主要目的,查询操作示例如下:
  • UPDATE或DELETE操作 UPDATE或DELETE操作与GET操作类似,也是先根据routing确定分片,再进行更新或删除操作,因此对于写入使用了routing的文档,必须指定routing,否则会报404响应。

3.3 设置routing为必选参数

从3.2的分析可以看出对于使用routing写入的文档,在进行GET,UPDATE或DELETE操作时如果不指定routing参数会出现异常。为此ES提供了一个索引mapping级别的设置,_routing.required, 来强制用户在INDEX,GET, DELETE,UPDATA一个文档时必须使用routing参数。当然查询时不受该参数的限制的。该参数的设置方式如下:

PUT my_index
{
  "mappings": {
    "_doc": {
      "_routing": {
        "required": true 
      }
    }
  }
}

3.4 routing结合别名使用

别名功能支持设置routing, 如下:

POST /_aliases
{
    "actions" : [
        {
            "add" : {
                 "index" : "test",
                 "alias" : "alias1",
                 "routing" : "1"
            }
        }
    ]
}

还支持查询和写入使用不同的routing,[详情参考]

将routing和别名结合,可以对使用者屏蔽读写时使用routing的细节,降低误操作的风险,提高操作的效率。

routing是ES中相对高阶一些的用法,在用户了解业务数据分布和查询需求的基础之上,可以对查询性能进行优化,然而使用不当会导致数据倾斜,重复ID等问题。本文介绍了routing的原理,问题及使用技巧,希望对大家有帮助,欢迎评论讨论(微信公众号无法评论,可以点击原文进行评论)

欢迎关注公众号Elastic慕容,和我一起进入Elastic的奇妙世界吧

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 深入了解Elasitcsearch存储

    本文我们将研究Elasticsearch各功能模块写入数据目录中的文件。我们将分别从节点层面,索引层面和分片层面进行了解,并简单解释他们的内容,以帮助大家了解E...

    michelmu
  • 深入理解Elasticsearch写入过程

    Elasticsearch 是当前主流的搜索引擎,其具有扩展性好,查询速度快,查询结果近实时等优点,本文将对Elasticsearch的写操作进行分析。

    michelmu
  • Elasticsearch在安全分析领域的应用

    ES (Elasticsearch)是当前主流的大数据搜索引擎,具有扩展性好,检索速度快,近实时等优势,依托于ES的这些优势,其不仅广泛地应用于各种搜索场景,如...

    michelmu
  • Leetcode Palindrome Number

    Determine whether an integer is a palindrome. An integer is a palindrome when it...

  • java-覆盖equals和hashcode方法

    在effective java 一书中,第三章第一节,讲了覆盖equals及hashcode的相关约定。通常情况下,equals表示逻辑值相等,而则表示引用指向...

    冬天里的懒猫
  • Python学习之旅(三十八)

    MySQL是Web世界中使用最广泛的数据库服务器。SQLite的特点是轻量级、可嵌入,但不能承受高并发访问,适合桌面和移动应用。而MySQL是为服务器端设计的数...

    py3study
  • Uber无人驾驶汽车的“安全性”令人担忧,每1.2公里就需要人为干预

    镁客网
  • 优步发布飞行汽车原型,未来“空中出租车”价格与高端打车相当?

    不再是科幻小说中的奇思妙想,飞行出租车正在吸引来自数十家公司的大量投资,Uber就是其中之一。据外媒报道,Uber在其第二次Elevate年度峰会上,展示了“飞...

    机器人网
  • 处理视觉冲突 | 手势导航 (二)

    我们将在近期为大家带来一个关于 "手势导航" 的系列连载,本文是连载的第二篇,如果您希望了解其他手势导航的话题,请持续关注我们。

    Android 开发者
  • 基于 Spring Data JPA 聊聊悲观锁和乐观锁

    举个场景:多线程、多进程应用在对数据库的同一数据进行非幂等操作时,如果没有添加相应的锁机制进行校验、判断,通常会导致数据的脏写。抛开分布式锁这种解决思路,简单的...

    happyJared

扫码关注云+社区

领取腾讯云代金券