前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >OpenCV图像处理专栏一 | 盘点常见颜色空间互转

OpenCV图像处理专栏一 | 盘点常见颜色空间互转

作者头像
BBuf
发布2019-12-09 10:28:09
1.1K0
发布2019-12-09 10:28:09
举报
文章被收录于专栏:GiantPandaCVGiantPandaCV

前言

今天是OpenCV传统图像处理算法的第一篇,我们来盘点一下常见的6种颜色空间互转算法,并给出了一些简单的加速方案,希望可以帮助到学习OpenCV图像处理的同学。这6种算法分别是:

  • RGB和GRAY互转
  • RGB和YUV互转
  • RGB和HSV互转
  • RGB和HSI互转
  • RGB和YCbCr互转
  • RGB和YDbDr互转

算法原理和代码实现

一,RGBGG转GRAY

RGB是依据人眼识别的颜色定义出的空间,可表示大部分颜色。是图像处理中最基本、最常用、面向硬件的颜色空间,是一种光混合的体系。

RGB颜色空间最常用的用途就是显示器系统,彩色阴极射线管,彩色光栅图形的显示器都使用R、G、B数值来驱动R、G、B 电子枪发射电子,并分别激发荧光屏上的R、G、B三种颜色的荧光粉发出不同亮度的光线,并通过相加混合产生各种颜色。扫描仪也是通过吸收原稿经反射或透射而发送来的光线中的R、G、B成分,并用它来表示原稿的颜色。

首先是RGB2GRAY,也就是彩色图转灰度图的算法。RGB值和灰度的转换,实际上是人眼对于彩色的感觉到亮度感觉的转换,这是一个心理学问题,有一个公式:Grey = 0.299R + 0.587G + 0.114B。直接计算复杂度较高,考虑优化可以将小数转为整数,除法变为移位,乘法也变为移位,但是这种方法也会带来一定的精度损失,我们可以根据实际情况选择需要保留的精度位数。下面给出不同精度(2-20位)的计算公式:

代码语言:javascript
复制
Grey = (R*1 + G*2 + B*1) >> 2

Grey= (R*2 + G*5 + B*1) >> 3

Grey= (R*4 + G*10 + B*2) >> 4

Grey = (R*9 + G*19 + B*4) >> 5

Grey = (R*19 + G*37 + B*8) >> 6

Grey= (R*38 + G*75 + B*15) >> 7

Grey= (R*76 + G*150 + B*30) >> 8

Grey = (R*153 + G*300 + B*59) >> 9

Grey = (R*306 + G*601 + B*117) >> 10

Grey = (R*612 + G*1202 + B*234) >> 11

Grey = (R*1224 + G*2405 + B*467) >> 12

Grey= (R*2449 + G*4809 + B*934) >> 13

Grey= (R*4898 + G*9618 + B*1868) >> 14

Grey = (R*9797 + G*19235 + B*3736) >> 15

Grey = (R*19595 + G*38469 + B*7472) >> 16

Grey = (R*39190 + G*76939 + B*14943) >> 17

Grey = (R*78381 + G*153878 + B*29885) >> 18

Grey =(R*156762 + G*307757 + B*59769) >> 19

Grey= (R*313524 + G*615514 + B*119538) >> 20

再给出保留20位精度的计算代码(使用了Openmp多线程优化):

代码语言:javascript
复制
//RGB2GRAY优化
Mat speed_rgb2gray(Mat src) {
	Mat dst(src.rows, src.cols, CV_8UC1);
#pragma omp parallel for num_threads(4)
	for (int i = 0; i < src.rows; i++) {
		for (int j = 0; j < src.cols; j++) {
			dst.at<uchar>(i, j) = ((src.at<Vec3b>(i, j)[0] << 18) + (src.at<Vec3b>(i, j)[0] << 15) + (src.at<Vec3b>(i, j)[0] << 14) +
				(src.at<Vec3b>(i, j)[0] << 11) + (src.at<Vec3b>(i, j)[0] << 7) + (src.at<Vec3b>(i, j)[0] << 7) + (src.at<Vec3b>(i, j)[0] << 5) +
				(src.at<Vec3b>(i, j)[0] << 4) + (src.at<Vec3b>(i, j)[0] << 2) +
				(src.at<Vec3b>(i, j)[1] << 19) + (src.at<Vec3b>(i, j)[1] << 16) + (src.at<Vec3b>(i, j)[1] << 14) + (src.at<Vec3b>(i, j)[1] << 13) +
				(src.at<Vec3b>(i, j)[1] << 10) + (src.at<Vec3b>(i, j)[1] << 8) + (src.at<Vec3b>(i, j)[1] << 4) + (src.at<Vec3b>(i, j)[1] << 3) + (src.at<Vec3b>(i, j)[1] << 1) +
				(src.at<Vec3b>(i, j)[2] << 16) + (src.at<Vec3b>(i, j)[2] << 15) + (src.at<Vec3b>(i, j)[2] << 14) + (src.at<Vec3b>(i, j)[2] << 12) +
				(src.at<Vec3b>(i, j)[2] << 9) + (src.at<Vec3b>(i, j)[2] << 7) + (src.at<Vec3b>(i, j)[2] << 6) + (src.at<Vec3b>(i, j)[2] << 5) + (src.at<Vec3b>(i, j)[2] << 4) + (src.at<Vec3b>(i, j)[2] << 1) >> 20);
		}
	}
	return dst;
}

二,RGB和YUV互转

首先介绍一下YUV颜色空间,YUV(亦称YCrCb)是被欧洲电视系统所采用的一种颜色编码方法。在现代彩色电视系统中,通常采用三管彩色摄像机或彩色CCD摄影机进行取像,然后把取得的彩色图像信号经分色、分别放大校正后得到RGB,再经过矩阵变换电路得到亮度信号Y和两个色差信号R-Y(即U)、B-Y(即V),最后发送端将亮度和两个色差总共三个信号分别进行编码,用同一信道发送出去。这种色彩的表示方法就是所谓的YUV色彩空间表示。采用YUV色彩空间的重要性是它的亮度信号Y和色度信号U、V是分离的。如果只有Y信号分量而没有U、V信号分量,那么这样表示的图像就是黑白灰度图像。彩色电视采用YUV空间正是为了用亮度信号Y解决彩色电视机与黑白电视机的兼容问题,使黑白电视机也能接收彩色电视信号。YUV主要用于优化彩色视频信号的传输,使其向后相容老式黑白电视。与RGB视频信号传输相比,它最大的优点在于只需占用极少的频宽(RGB要求三个独立的视频信号同时传输)。其中“Y”表示明亮度(Luminance或Luma),也就是灰阶值;而“U”和“V” 表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。“亮度”是透过RGB输入信号来建立的,方法是将RGB信号的特定部分叠加到一起。“色度”则定义了颜色的两个方面─色调与饱和度,分别用Cr和Cb来表示。其中,Cr反映了RGB输入信号红色部分与RGB信号亮度值之间的差异。而Cb反映的是RGB输入信号蓝色部分与RGB信号亮度值之同的差异。 1,RGB转YUV

Y = 0.299R + 0.587G + 0.114B U = -0.147R - 0.289G + 0.436B V = 0.615R - 0.515G - 0.100B

2,YUV转RGB

R = Y + 1.14V G = Y - 0.39U - 0.58V B = Y + 2.03U

优化1:去掉浮点运算

基于这一点,我们做如下操作:

代码语言:javascript
复制
Y * 256 = 0.299 * 256R + 0.587 * 256G + 0.114 * 256B

U * 256 = -0.147 * 256R - 0.289 * 256G + 0.436 * 256B
V * 256 = 0.615 * 256R - 0.515 * 256G - 0.100 * 256B

R * 256 = Y * 256 + 1.14 * 256V
G * 256 = Y * 256 - 0.39 * 256U - 0.58 * 256V
B * 256 = Y * 256 + 2.03 * 256U

简化上面的公式如下:

代码语言:javascript
复制
256Y = 76.544R + 150.272G + 29.184B

256U = -37.632R - 73.984G + 111.616B

256V = 157.44R - 131.84G - 25.6B

256R = 256Y + 291.84V

256G = 256Y - 99.84U - 148.48V

256B = 256Y + 519.68U

然后,我们就可以对上述公式进一步优化,彻底干掉小数,注意这里是有精度损失的。

代码语言:javascript
复制
256Y = 77R + 150G + 29B

256U = -38R - 74G + 112B

256V = 158R - 132G - 26B

256R = 256Y + 292V

256G = 256Y - 100U - 149V

256B = 256Y + 520U

实际上就是四舍五入,这是乘以256是为了缩小误差,当然乘数越大,误差越小。和RGB2GRAY一样的套路。

优化二:乘法和除法变为移位运算

先将除法变为移位运算:

代码语言:javascript
复制
Y = (77R + 150G + 29B) >> 8

U = (-38R - 74G + 112B) >> 8

V = (158R - 132G - 26B) >> 8

R = (256Y + 292V) >> 8

G = (256Y - 100U - 149V) >> 8

B = (256Y + 520U) >> 8

公式中还有很多乘法运算,乘法跟移位运算相比,还是效率太低了,因此,我们将把所有乘法都改成移位运算。如何将常数乘法改成移位运算?这里给个例子:Y=Y*9可以改为:Y=(Y<<3)+Y。因此,我们可以讲YUV的公式继续改为最简:RGB转YUV:

代码语言:javascript
复制
Y = ((R << 6) + (R << 3) + (R << 2) + R + (G << 7) + (G << 4) + (G << 2) + (G << 1) + (B << 4) + (B << 3) + (B << 2) + B) >> 8;
U = (-((R << 5) + (R << 2) + (R << 1)) - ((G << 6) + (G << 3) + (G << 1)) + ((B << 6) + (B << 5) + (B << 4))) >> 8;
V = ((R << 7) + (R << 4) + (R << 3) + (R << 2) + (R << 1) - ((G << 7) + (G << 2)) - ((B << 4) + (B << 3) + (B << 1))) >> 8;

YUV转RGB:

代码语言:javascript
复制
R = ((Y << 8) + ((V << 8) + (V << 5) + (V << 2))) >> 8;
G = ((Y << 8) - ((U << 6) + (U << 5) + (U << 2)) - ((V << 7) + (V << 4) + (V << 2) + V)) >> 8;
B = ((Y << 8) + (U << 9) + (U << 3)) >> 8;

使用OpemMP和上诉优化的互转代码如下:注意一下,imread读取的图片通道顺序默认是BGR。

代码语言:javascript
复制
//RGB2YUV优化
Mat speed_rgb2yuv(Mat src) {
	Mat dst(src.rows, src.cols, CV_8UC3);
#pragma omp parallel for num_threads(4)
	for (int i = 0; i < src.rows; i++) {
		for (int j = 0; j < src.cols; j++) {
			dst.at<Vec3b>(i, j)[0] =
				((src.at<Vec3b>(i, j)[2] << 6) + (src.at<Vec3b>(i, j)[2] << 3) + (src.at<Vec3b>(i, j)[2] << 2) + src.at<Vec3b>(i, j)[2] +
				(src.at<Vec3b>(i, j)[1] << 7) + (src.at<Vec3b>(i, j)[1] << 4) + (src.at<Vec3b>(i, j)[1] << 2) + (src.at<Vec3b>(i, j)[1] << 1) +
					(src.at<Vec3b>(i, j)[0] << 4) + (src.at<Vec3b>(i, j)[0] << 3) + (src.at<Vec3b>(i, j)[0] << 2) + src.at<Vec3b>(i, j)[0]) >> 8;
			dst.at<Vec3b>(i, j)[1] = (-((src.at<Vec3b>(i, j)[2] << 5) + (src.at<Vec3b>(i, j)[2] << 2) + (src.at<Vec3b>(i, j)[2] << 1)) -
				((src.at<Vec3b>(i, j)[1] << 6) + (src.at<Vec3b>(i, j)[1] << 3) + (src.at<Vec3b>(i, j)[1] << 1)) +
				((src.at<Vec3b>(i, j)[0] << 6) + (src.at<Vec3b>(i, j)[0] << 5) + (src.at<Vec3b>(i, j)[0] << 4))) >> 8;
			dst.at<Vec3b>(i, j)[2] = ((src.at<Vec3b>(i, j)[2] << 7) + (src.at<Vec3b>(i, j)[2] << 4) + (src.at<Vec3b>(i, j)[2] << 3) + (src.at<Vec3b>(i, j)[2] << 2) + (src.at<Vec3b>(i, j)[2] << 1) -
				((src.at<Vec3b>(i, j)[1] << 7) + (src.at<Vec3b>(i, j)[1] << 2)) - ((src.at<Vec3b>(i, j)[0] << 4) + (src.at<Vec3b>(i, j)[0] << 3) + (src.at<Vec3b>(i, j)[0] << 1))) >> 8;
		}
	}
	return dst;
}


//YUV2RGB优化
Mat speed_yuv2rgb(Mat src) {
	Mat dst(src.rows, src.cols, CV_8UC3);
	#pragma omp parallel for num_threads(4)
	for (int i = 0; i < src.rows; i++) {
		for (int j = 0; j < src.cols; j++) {
			dst.at<Vec3b>(i, j)[0] = ((src.at<Vec3b>(i, j)[0] << 8) + (src.at<Vec3b>(i, j)[1] << 9) + (src.at<Vec3b>(i, j)[1] << 3)) >> 8;
			dst.at<Vec3b>(i, j)[1] = ((src.at<Vec3b>(i, j)[0] << 8) - ((src.at<Vec3b>(i, j)[1] << 6) + (src.at<Vec3b>(i, j)[1] << 5) +
			(src.at<Vec3b>(i, j)[1] << 2)) - ((src.at<Vec3b>(i, j)[2] << 7) + (src.at<Vec3b>(i, j)[2] << 4) +
			(src.at<Vec3b>(i, j)[2] << 2) + src.at<Vec3b>(i, j)[2])) >> 8;
			dst.at<Vec3b>(i, j)[2] = ((src.at<Vec3b>(i, j)[0] << 8) + ((src.at<Vec3b>(i, j)[2] << 8) + (src.at<Vec3b>(i, j)[2] << 5) +
			(src.at<Vec3b>(i, j)[2] << 2))) >> 8;
		}
	}
	return dst;
}

三,RGB和HSV互转

HSV是一种将RGB色彩空间中的点在倒圆锥体中的表示方法。HSV即色相(Hue)、饱和度(Saturation)、明度(Value),又称HSB(B即Brightness)。色相是色彩的基本属性,就是平常说的颜色的名称,如红色、黄色等。饱和度(S)是指色彩的纯度,越高色彩越纯,低则逐渐变灰,取0-100%的数值。明度(V),取0-max(计算机中HSV取值范围和存储的长度有关)。HSV颜色空间可以用一个圆锥空间模型来描述。圆锥的顶点处,V=0,H和S无定义,代表黑色。圆锥的顶面中心处V=max,S=0,H无定义,代表白色。RGB颜色空间中,三种颜色分量的取值与所生成的颜色之间的联系并不直观。而HSV颜色空间,更类似于人类感觉颜色的方式,封装了关于颜色的信息:“这是什么颜色?深浅如何?明暗如何?”。从RGB转到HSV的计算公式为:设max等于r、g和b中的最大者,min为最小者。对应的HSV空间中的(h,s,v)值为:

h在0到360°之间,s在0到100%之间,v在0到max之间。从HSV空间转回RGB空间的公式为:

代码实现,效果测试无误:

代码语言:javascript
复制
Mat RGB2HSV(Mat src) {
	int row = src.rows;
	int col = src.cols;
	Mat dst(row, col, CV_32FC3);
	for (int i = 0; i < row; i++) {
		for (int j = 0; j < col; j++) {
			float b = src.at<Vec3b>(i, j)[0] / 255.0;
			float g = src.at<Vec3b>(i, j)[1] / 255.0;
			float r = src.at<Vec3b>(i, j)[2] / 255.0;
			float minn = min(r, min(g, b));
			float maxx = max(r, max(g, b));
			dst.at<Vec3f>(i, j)[2] = maxx; //V
			float delta = maxx - minn;
			float h, s;
			if (maxx != 0) {
				s = delta / maxx;
			}
			else {
				s = 0;
			}
			if (r == maxx) {
				h = (g - b) / delta;
			}
			else if (g == maxx) {
				h = 2 + (b - r) / delta;
			}
			else {
				h = 4 + (r - g) / delta;
			}
			h *= 60;
			if (h < 0)
				h += 360;
			dst.at<Vec3f>(i, j)[0] = h;
			dst.at<Vec3f>(i, j)[1] = s;
		}
	}
	return dst;
}

Mat HSV2RGB(Mat src) {
	int row = src.rows;
	int col = src.cols;
	Mat dst(row, col, CV_8UC3);
	float r, g, b, h, s, v;
	for (int i = 0; i < row; i++) {
		for (int j = 0; j < col; j++) {
			h = src.at<Vec3f>(i, j)[0];
			s = src.at<Vec3f>(i, j)[1];
			v = src.at<Vec3f>(i, j)[2];
			if (s == 0) {
				r = g = b = v;
			}
			else {
				h /= 60;
				int offset = floor(h);
				float f = h - offset;
				float p = v * (1 - s);
				float q = v * (1 - s * f);
				float t = v * (1 - s * (1 - f));
				switch (offset)
				{
				case 0: r = v; g = t; b = p; break;
				case 1: r = q; g = v; b = p; break;
				case 2: r = p; g = v; b = t; break;
				case 3: r = p; g = q; b = v; break;
				case 4: r = t; g = p; b = v; break;
				case 5: r = v; g = p; b = q; break;
				default:
					break;
				}
			}
			dst.at<Vec3b>(i, j)[0] = int(b * 255);
			dst.at<Vec3b>(i, j)[1] = int(g * 255);
			dst.at<Vec3b>(i, j)[2] = int(r * 255);
		}
	}
	return dst;
}

四,RGB和HSI互转

HSI色彩空间是从人的视觉系统出发,用色调(Hue)、饱和度(Saturation或Chroma)和亮度 (Intensity或Brightness)来描述色彩。

  • H——表示颜色的相位角。红、绿、蓝分别相隔120度;互补色分别相差180度,即颜色的类别。
  • S——表示成所选颜色的纯度和该颜色最大的纯度之间的比率,范围:[0, 1],即颜色的深浅程度。
  • I——表示色彩的明亮程度,围:[0, 1],人眼对亮度很敏感!

可以看到HSI色彩空间和RGB色彩空间只是同一物理量的不同表示法,因而它们之间存在着转换关系:HSI颜色模式中的色调使用颜色类别表示,饱和度与颜色的白光光亮亮度刚好成反比,代表灰色与色调的比例,亮度是颜色的相对明暗程度。转自:https://blog.csdn.net/aoshilang2249/article/details/38070663 RGB转换为HSI的公式:

HSI转RGB的公式为:给定 HSI空间中的 (h, s, l) 值定义的一个颜色,带有 h 在指示色相角度的值域 [0, 360)中,分别表示饱和度和亮度的s 和 l 在值域 [0, 1] 中,相应在 RGB 空间中的 (r, g, b) 三原色,带有分别对应于红色、绿色和蓝色的 r, g 和 b 也在值域 [0, 1] 中,它们可计算为:首先,如果 s = 0,则结果的颜色是非彩色的、或灰色的。在这个特殊情况,r, g 和 b 都等于 l。注意 h 的值在这种情况下是未定义的。当 s ≠ 0 的时候,可以使用下列过程:

源码实现,测试无误:

代码语言:javascript
复制
Mat RGB2HSI(Mat src) {
	int row = src.rows;
	int col = src.cols;
	Mat dst(row, col, CV_32FC3);
	for (int i = 0; i < row; i++) {
		for (int j = 0; j < col; j++) {
			float b = src.at<Vec3b>(i, j)[0] / 255.0;
			float g = src.at<Vec3b>(i, j)[1] / 255.0;
			float r = src.at<Vec3b>(i, j)[2] / 255.0;
			float minn = min(b, min(g, r));
			float maxx = max(b, max(g, r));
			float H = 0;
			float S = 0;
			float I = (minn + maxx) / 2.0f;
			if (maxx == minn) {
				dst.at<Vec3f>(i, j)[0] = H;
				dst.at<Vec3f>(i, j)[1] = S;
				dst.at<Vec3f>(i, j)[2] = I;
			}
			else {
				float delta = maxx - minn;
				if (I < 0.5) {
					S = delta / (maxx + minn);
				}
				else {
					S = delta / (2.0 - maxx - minn);
				}
				if (r == maxx) {
					if (g > b) {
						H = (g - b) / delta;
					}
					else {
						H = 6.0 + (g - b) / delta;
					}
				}
				else if (g == maxx) {
					H = 2.0 + (b - r) / delta;
				}
				else {
					H = 4.0 + (r - g) / delta;
				}
				H /= 6.0; //除以6,表示在那个部分
				if (H < 0.0)
					H += 1.0;
				if (H > 1)
					H -= 1;
				H = (int)(H * 360); //转成[0, 360]
				dst.at<Vec3f>(i, j)[0] = H;
				dst.at<Vec3f>(i, j)[1] = S;
				dst.at<Vec3f>(i, j)[2] = I;
			}
		}
	}
	return dst;
}

float get_Ans(double p, double q, double Ht) {
	if (Ht < 0.0)
		Ht += 1.0;
	else if (Ht > 1.0)
		Ht -= 1.0;
	if ((6.0 * Ht) < 1.0)
		return (p + (q - p) * Ht * 6.0);
	else if ((2.0 * Ht) < 1.0)
		return q;
	else if ((3.0 * Ht) < 2.0)
		return (p + (q - p) * ((2.0F / 3.0F) - Ht) * 6.0);
	else
		return (p);
}

Mat HSI2RGB(Mat src) {
	int row = src.rows;
	int col = src.cols;
	Mat dst(row, col, CV_8UC3);
	for (int i = 0; i < row; i++) {
		for (int j = 0; j < col; j++) {
			float r, g, b, M1, M2;
			float H = src.at<Vec3f>(i, j)[0];
			float S = src.at<Vec3f>(i, j)[1];
			float I = src.at<Vec3f>(i, j)[2];
			float hue = H / 360;
			if (S == 0) {//灰色
				r = g = b = I;
			}
			else {
				if (I <= 0.5) {
					M2 = I * (1.0 + S);
				}
				else {
					M2 = I + S - I * S;
				}
				M1 = (2.0 * I - M2);
				r = get_Ans(M1, M2, hue + 1.0 / 3.0);
				g = get_Ans(M1, M2, hue);
				b = get_Ans(M1, M2, hue - 1.0 / 3.0);
			}
			dst.at<Vec3b>(i, j)[0] = (int)(b * 255);
			dst.at<Vec3b>(i, j)[1] = (int)(g * 255);
			dst.at<Vec3b>(i, j)[2] = (int)(r * 255);
		}
	}
	return dst;
}

五,RGB和YCbCr互转

在常用的几种颜色空间中,YCbCr颜色空间在学术论文中出现的频率是相当高的,常用于肤色检测等等。其和RGB空间之间的相互转换公式在网上也有多种,我们这里取http://en.wikipedia.org/wiki/YCbCr 描述的JPG转换时使用的计算公式:

和RGB与CIEXYZ空间互转的优化套路一样,测试无误的代码如下:

代码语言:javascript
复制
const float YCbCrYRF = 0.299F;              // RGB转YCbCr的系数(浮点类型)
const float YCbCrYGF = 0.587F;
const float YCbCrYBF = 0.114F;
const float YCbCrCbRF = -0.168736F;
const float YCbCrCbGF = -0.331264F;
const float YCbCrCbBF = 0.500000F;
const float YCbCrCrRF = 0.500000F;
const float YCbCrCrGF = -0.418688F;
const float YCbCrCrBF = -0.081312F;

const float RGBRYF = 1.00000F;            // YCbCr转RGB的系数(浮点类型)
const float RGBRCbF = 0.0000F;
const float RGBRCrF = 1.40200F;
const float RGBGYF = 1.00000F;
const float RGBGCbF = -0.34414F;
const float RGBGCrF = -0.71414F;
const float RGBBYF = 1.00000F;
const float RGBBCbF = 1.77200F;
const float RGBBCrF = 0.00000F;

const int Shift = 20;
const int HalfShiftValue = 1 << (Shift - 1);

const int YCbCrYRI = (int)(YCbCrYRF * (1 << Shift) + 0.5);         // RGB转YCbCr的系数(整数类型)
const int YCbCrYGI = (int)(YCbCrYGF * (1 << Shift) + 0.5);
const int YCbCrYBI = (int)(YCbCrYBF * (1 << Shift) + 0.5);
const int YCbCrCbRI = (int)(YCbCrCbRF * (1 << Shift) + 0.5);
const int YCbCrCbGI = (int)(YCbCrCbGF * (1 << Shift) + 0.5);
const int YCbCrCbBI = (int)(YCbCrCbBF * (1 << Shift) + 0.5);
const int YCbCrCrRI = (int)(YCbCrCrRF * (1 << Shift) + 0.5);
const int YCbCrCrGI = (int)(YCbCrCrGF * (1 << Shift) + 0.5);
const int YCbCrCrBI = (int)(YCbCrCrBF * (1 << Shift) + 0.5);

const int RGBRYI = (int)(RGBRYF * (1 << Shift) + 0.5);              // YCbCr转RGB的系数(整数类型)
const int RGBRCbI = (int)(RGBRCbF * (1 << Shift) + 0.5);
const int RGBRCrI = (int)(RGBRCrF * (1 << Shift) + 0.5);
const int RGBGYI = (int)(RGBGYF * (1 << Shift) + 0.5);
const int RGBGCbI = (int)(RGBGCbF * (1 << Shift) + 0.5);
const int RGBGCrI = (int)(RGBGCrF * (1 << Shift) + 0.5);
const int RGBBYI = (int)(RGBBYF * (1 << Shift) + 0.5);
const int RGBBCbI = (int)(RGBBCbF * (1 << Shift) + 0.5);
const int RGBBCrI = (int)(RGBBCrF * (1 << Shift) + 0.5);

Mat RGB2YCbCr(Mat src) {
	int row = src.rows;
	int col = src.cols;
	Mat dst(row, col, CV_8UC3);
	for (int i = 0; i < row; i++) {
		for (int j = 0; j < col; j++) {
			int Blue = src.at<Vec3b>(i, j)[0];
			int Green = src.at<Vec3b>(i, j)[1];
			int Red = src.at<Vec3b>(i, j)[2];
			dst.at<Vec3b>(i, j)[0] = (int)((YCbCrYRI * Red + YCbCrYGI * Green + YCbCrYBI * Blue + HalfShiftValue) >> Shift);
			dst.at<Vec3b>(i, j)[1] = (int)(128 + ((YCbCrCbRI * Red + YCbCrCbGI * Green + YCbCrCbBI * Blue + HalfShiftValue) >> Shift));
			dst.at<Vec3b>(i, j)[2] = (int)(128 + ((YCbCrCrRI * Red + YCbCrCrGI * Green + YCbCrCrBI * Blue + HalfShiftValue) >> Shift));
		}
	}
	return dst;
}

Mat YCbCr2RGB(Mat src) {
	int row = src.rows;
	int col = src.cols;
	Mat dst(row, col, CV_8UC3);
	for (int i = 0; i < row; i++) {
		for (int j = 0; j < col; j++) {
			int Y = src.at<Vec3b>(i, j)[0];
			int Cb = src.at<Vec3b>(i, j)[1] - 128;
			int Cr = src.at<Vec3b>(i, j)[2] - 128;
			int Red = Y + ((RGBRCrI * Cr + HalfShiftValue) >> Shift);
			int Green = Y + ((RGBGCbI * Cb + RGBGCrI * Cr + HalfShiftValue) >> Shift);
			int Blue = Y + ((RGBBCbI * Cb + HalfShiftValue) >> Shift);
			if (Red > 255) Red = 255; else if (Red < 0) Red = 0;
			if (Green > 255) Green = 255; else if (Green < 0) Green = 0;    // 编译后应该比三目运算符的效率高
			if (Blue > 255) Blue = 255; else if (Blue < 0) Blue = 0;
			dst.at<Vec3b>(i, j)[0] = Blue;
			dst.at<Vec3b>(i, j)[1] = Green;
			dst.at<Vec3b>(i, j)[2] = Red;
		}
	}
	return dst;
}

六,RGB和YDbDr互转

YDbDr颜色空间和YCbCr颜色空间类似,其和RGB空间之间的相互转换公式里取http://en.wikipedia.org/wiki/YDbDr 所描述的。

代码:

代码语言:javascript
复制
const float YDbDrYRF = 0.299F;              // RGB转YDbDr的系数(浮点类型)
const float YDbDrYGF = 0.587F;
const float YDbDrYBF = 0.114F;
const float YDbDrDbRF = -0.1688F;
const float YDbDrDbGF = -0.3312F;
const float YDbDrDbBF = 0.5F;
const float YDbDrDrRF = -0.5F;
const float YDbDrDrGF = 0.4186F;
const float YDbDrDrBF = 0.0814F;

const float RGBRYF = 1.00000F;            // YDbDr转RGB的系数(浮点类型)
const float RGBRDbF = 0.0002460817072494899F;
const float RGBRDrF = -1.402083073344533F;
const float RGBGYF = 1.00000F;
const float RGBGDbF = -0.344268308442098F;
const float RGBGDrF = 0.714219609001458F;
const float RGBBYF = 1.00000F;
const float RGBBDbF = 1.772034373903893F;
const float RGBBDrF = 0.0002111539810593343F;

const int Shift = 20;
const int HalfShiftValue = 1 << (Shift - 1);

const int YDbDrYRI = (int)(YDbDrYRF * (1 << Shift) + 0.5);         // RGB转YDbDr的系数(整数类型)
const int YDbDrYGI = (int)(YDbDrYGF * (1 << Shift) + 0.5);
const int YDbDrYBI = (int)(YDbDrYBF * (1 << Shift) + 0.5);
const int YDbDrDbRI = (int)(YDbDrDbRF * (1 << Shift) + 0.5);
const int YDbDrDbGI = (int)(YDbDrDbGF * (1 << Shift) + 0.5);
const int YDbDrDbBI = (int)(YDbDrDbBF * (1 << Shift) + 0.5);
const int YDbDrDrRI = (int)(YDbDrDrRF * (1 << Shift) + 0.5);
const int YDbDrDrGI = (int)(YDbDrDrGF * (1 << Shift) + 0.5);
const int YDbDrDrBI = (int)(YDbDrDrBF * (1 << Shift) + 0.5);

const int RGBRYI = (int)(RGBRYF * (1 << Shift) + 0.5);              // YDbDr转RGB的系数(整数类型)
const int RGBRDbI = (int)(RGBRDbF * (1 << Shift) + 0.5);
const int RGBRDrI = (int)(RGBRDrF * (1 << Shift) + 0.5);
const int RGBGYI = (int)(RGBGYF * (1 << Shift) + 0.5);
const int RGBGDbI = (int)(RGBGDbF * (1 << Shift) + 0.5);
const int RGBGDrI = (int)(RGBGDrF * (1 << Shift) + 0.5);
const int RGBBYI = (int)(RGBBYF * (1 << Shift) + 0.5);
const int RGBBDbI = (int)(RGBBDbF * (1 << Shift) + 0.5);
const int RGBBDrI = (int)(RGBBDrF * (1 << Shift) + 0.5);

Mat RGB2YDbDr(Mat src) {
	int row = src.rows;
	int col = src.cols;
	Mat dst(row, col, CV_8UC3);
	for (int i = 0; i < row; i++) {
		for (int j = 0; j < col; j++) {
			int Blue = src.at<Vec3b>(i, j)[0];
			int Green = src.at<Vec3b>(i, j)[1];
			int Red = src.at<Vec3b>(i, j)[2];
			dst.at<Vec3b>(i, j)[0] = (uchar)((YDbDrYRI * Red + YDbDrYGI * Green + YDbDrYBI * Blue + HalfShiftValue) >> Shift);
			dst.at<Vec3b>(i, j)[1] = (uchar)(128 + ((YDbDrDbRI * Red + YDbDrDbGI * Green + YDbDrDbBI * Blue + HalfShiftValue) >> Shift));
			dst.at<Vec3b>(i, j)[2] = (uchar)(128 + ((YDbDrDrRI * Red + YDbDrDrGI * Green + YDbDrDrBI * Blue + HalfShiftValue) >> Shift));
		}
	}
	return dst;
}

Mat YDbDr2RGB(Mat src) {
	int row = src.rows;
	int col = src.cols;
	Mat dst(row, col, CV_8UC3);
	for (int i = 0; i < row; i++) {
		for (int j = 0; j < col; j++) {
			int Y = src.at<Vec3b>(i, j)[0];
			int Db = src.at<Vec3b>(i, j)[1] - 128;
			int Dr = src.at<Vec3b>(i, j)[2] - 128;
			int Red = Y + ((RGBRDbI * Db + RGBRDrI * Dr + HalfShiftValue) >> Shift);
			int Green = Y + ((RGBGDbI * Db + RGBGDrI * Dr + HalfShiftValue) >> Shift);
			int Blue = Y + ((RGBBDbI * Db + RGBBDrI * Dr + HalfShiftValue) >> Shift);
			if (Red > 255) Red = 255;
			else if (Red < 0) Red = 0;
			if (Green > 255) Green = 255;
			else if (Green < 0) Green = 0;
			if (Blue > 255) Blue = 0;
			else if (Blue < 0) Blue = 0;
			dst.at<Vec3b>(i, j)[0] = Blue;
			dst.at<Vec3b>(i, j)[1] = Green;
			dst.at<Vec3b>(i, j)[2] = Red;
		}
	}
	return dst;
}

后记

本文盘点了6种常见的颜色空间互转算法,因为这六种算法是我在学习过程和图像处理论文复现中有使用到的,所以如果还有其他我这里没提到的的转换算法,欢迎留言和我交流哦

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-12-02,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 GiantPandaCV 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 算法原理和代码实现
    • 一,RGBGG转GRAY
      • 二,RGB和YUV互转
        • 优化1:去掉浮点运算
          • 优化二:乘法和除法变为移位运算
            • 三,RGB和HSV互转
              • 四,RGB和HSI互转
                • 五,RGB和YCbCr互转
                  • 六,RGB和YDbDr互转
                  • 后记
                  相关产品与服务
                  图像处理
                  图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
                  领券
                  问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档