前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >CV Code | 计算机视觉开源周报20190904期

CV Code | 计算机视觉开源周报20190904期

作者头像
CV君
发布2019-12-27 11:04:56
6150
发布2019-12-27 11:04:56
举报
文章被收录于专栏:我爱计算机视觉

点击我爱计算机视觉标星,更快获取CVML新技术


本图来自第14篇论文

本文总结了过去一周的开源计算机视觉相关代码,有好几篇来自顶会NeurIPS 2019、ICCV 2019 等。

涉及方向众多,包括模型迁移、实时目标检测、目标预测、去雨质量评价、人体运动迁移、知识蒸馏、强化学习等。

通过属性映射研究深度模型知识的可迁移性

Deep Model Transferability from Attribution Maps

Jie Song, Yixin Chen, Xinchao Wang, Chengchao Shen, Mingli Song

NeurIPS 2019

https://arxiv.org/abs/1909.11902v1

https://github.com/zju-vipa/TransferbilityFromAttributionMaps

多目标位置预测

Multiple Object Forecasting: Predicting Future Object Locations in Diverse Environments

Olly Styles, Tanaya Guha, Victor Sanchez

WACV 2020

https://arxiv.org/abs/1909.11944v1

https://github.com/olly-styles/Multiple-Object-Forecasting

对真实下雨图像的去雨质量评价,主观和客观方法

Subjective and Objective De-raining Quality Assessment Towards Authentic Rain Image

Qingbo Wu, Lei Wang, King N. Ngan, Hongliang Li, Fanman Meng

https://arxiv.org/abs/1909.11983v1

https://github.com/wqb-uestc

人体运动模仿、表观迁移和新视图合成的统一框架

Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Wen Liu, Zhixin Piao, Jie Min, Wenhan Luo, Lin Ma, Shenghua Gao

ICCV 2019

https://arxiv.org/abs/1909.12224v1

https://svip-lab.github.io/project/impersonator.html

基于信息多重蒸馏网络的轻量图像超分辨率

Lightweight Image Super-Resolution with Information Multi-distillation Network

Zheng Hui, Xinbo Gao, Yunchu Yang, Xiumei Wang

ACM Multimedia 2019

https://arxiv.org/abs/1909.11856v1

https://github.com/Zheng222/IMDN

隐式语义数据增强,提高了ResNets 和 DenseNets 等网络在各种数据集比如 CIFAR-10, CIFAR-100 and ImageNet上的泛化性.

Implicit Semantic Data Augmentation for Deep Networks

Yulin Wang, Xuran Pan, Shiji Song, Hong Zhang, Cheng Wu, Gao Huang

NeurIPS 2019

https://arxiv.org/abs/1909.12220v1

https://github.com/blackfeather-wang/ISDA-for-Deep-Networks

针对CNN的降低内存使用的压缩感知训练方法

CAT: Compression-Aware Training for bandwidth reduction

Chaim Baskin, Brian Chmiel, Evgenii Zheltonozhskii, Ron Banner, Alex M. Bronstein, Avi Mendelson

https://arxiv.org/abs/1909.11481v1

https://github.com/CAT-teams/CAT

知识蒸馏的“无师自通”方法

Revisit Knowledge Distillation: a Teacher-free Framework

Li Yuan, Francis E.H.Tay, Guilin Li, Tao Wang, Jiashi Feng

https://arxiv.org/abs/1909.11723v1

https://github.com/yuanli2333/Teacher-free-Knowledge-Distillation

多步视觉任务的强化学习

"Good Robot!": Efficient Reinforcement Learning for Multi-Step Visual Tasks via Reward Shaping

Andrew Hundt, Benjamin Killeen, Heeyeon Kwon, Chris Paxton, Gregory D. Hager

https://arxiv.org/abs/1909.11730v1

https://github.com/jhu-lcsr/good_robot

统一的视觉语言预训练,针对图像描述与问答

Unified Vision-Language Pre-Training for Image Captioning and VQA

Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason J. Corso, Jianfeng Gao

https://arxiv.org/abs/1909.11059v1

https://github.com/LuoweiZhou/VLP

PolSAR图像分类

PolSAR Image Classification Based on Dilated Convolution and Pixel-Refining Parallel Mapping network in the Complex Domain

Xiao Dongling, Liu Chang

https://arxiv.org/abs/1909.10783v1

https://github.com/PROoshio/CRPM-Net

联合人头部和身体关系学习的检测方法

Relational Learning for Joint Head and Human Detection

Cheng Chi, Shifeng Zhang, Junliang Xing, Zhen Lei, Stan Z. Li, Xudong Zou

https://arxiv.org/abs/1909.10674v1

(代码将开源,还未公布地址)

巧合的是,本周还有另一篇来自旷视的人头和身体结合的行人检测方法:

Double Anchor R-CNN for Human Detection in a Crowd

Kevin Zhang, Feng Xiong, Peize Sun, Li Hu, Boxun Li, Gang Yu

https://arxiv.org/abs/1909.09998v1

快速精确的卷积目标检测,用于实时嵌入式平台

Fast and Accurate Convolutional Object Detectors for Real-time Embedded Platforms

Min-Kook Choi, Jaehyung Park, Heechul Jung, Jinhee Lee, Soo-Heang Eo

https://arxiv.org/abs/1909.10798v1

https://github.com/mkchoi-0323/modified_refinedet

用于目标检测平衡训练的生成正样本包围框的方法

Generating Positive Bounding Boxes for Balanced Training of Object Detectors

Kemal Oksuz, Baris Can Cam, Emre Akbas, Sinan Kalkan

https://arxiv.org/abs/1909.09777v1

(代码将开源,还未公布地址)

3D点云上进行有效图卷积的球形卷积核

Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds

Huan Lei, Naveed Akhtar, Ajmal Mian

https://arxiv.org/abs/1909.09287v1

https://github.com/hlei-ziyan/SPH3D-GCN

从文本图像中提取实体

EATEN: Entity-aware Attention for Single Shot Visual Text Extraction

He guo, Xiameng Qin, Jiaming Liu, Junyu Han, Jingtuo Liu, Errui Ding

https://arxiv.org/abs/1909.09380v1

https://github.com/beacandler/EATEN


本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-09-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 我爱计算机视觉 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
图像识别
腾讯云图像识别基于深度学习等人工智能技术,提供车辆,物体及场景等检测和识别服务, 已上线产品子功能包含车辆识别,商品识别,宠物识别,文件封识别等,更多功能接口敬请期待。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档