专栏首页CVer一文看尽9篇目标检测最新论文(MFPN/CR-NAS/Scale Match/Dense RepPoints等)

一文看尽9篇目标检测最新论文(MFPN/CR-NAS/Scale Match/Dense RepPoints等)

前言

一个月内 Amusi 整理了 目标检测(Object Detection)较为值得关注的论文:

一文看尽10篇目标检测最新论文(SpineNet/AugFPN/LRF-Net/SABL/DSFPN等)

一文看尽16篇目标检测最新论文(ATSS/MnasFPN/SAPD/CSPNet/DIoU Loss等)

恰逢2019年即将结束,本文再次更新近期值得关注的最新检测论文。这次分享的paper将同步推送到 github上,欢迎大家 star/fork(点击阅读原文,也可直接访问):

https://github.com/amusi/awesome-object-detection

注意事项:

  • 本文分享的目标检测论文既含Anchor-free系列新网络,基于NAS的检测新网络,还有多种目标检测数据集
  • 论文发布时间段:2019年12月18日-2019年12月25日

目标检测论文


【1】APRICOT:对目标检测模型进行物理对抗攻击的数据集

《APRICOT: A Dataset of Physical Adversarial Attacks on Object Detection》

时间:20191218

作者团队:MITRE公司

链接:https://arxiv.org/abs/1912.08166

注:作者说APRICOT是世界第一个开源的带物体对抗攻击的目标检测数据集,其实说是开源,但原文并没有附上开源链接,需要数据集的小伙伴还是直接email给原作者吧

你的目标检测网络能受得了这攻击么:


【2】零售商品检测的基准:密集目标检测的强大baseline

《Benchmark for Generic Product Detection: A strong baseline for Dense Object Detection》

时间:20191220

作者团队:ParallelDots深度学习公司

链接:https://arxiv.org/abs/1912.09476

代码&数据集链接:

https://github.com/ParallelDots/generic-sku-detection-benchmark

注:含6大零售场景下密集商品检测的数据集,如SKU110K、WebMarket等,并提供强大的baseline!


【3】生成正边界框以平衡目标检测器的训练

《Generating Positive Bounding Boxes for Balanced Training of Object Detectors》

时间:20191222(WACV 2020)

作者团队:中东科技大学

链接:https://arxiv.org/abs/1909.09777

代码:https://github.com/kemaloksuz/BoundingBoxGenerator

注:论文使用提出的pRoI生成器训练Faster R-CNN,与传统训练相比,针对低IoU可获得更好或同等的性能,而针对Pascal VOC和MS COCO数据集针对较高IoU进行训练时则可获得显著改善。


【4】MFPN:多种结构的新型混合特征金字塔网络

《MFPN: A Novel Mixture Feature Pyramid Network of Multiple Architectures for Object Detection》

时间:20191223

作者团队:北京大学&纽约州立大学石溪分校

链接:https://arxiv.org/abs/1912.09748

注:作者首先研究特征金字塔网络(FPN),并将其简要地分为三种典型方式:自顶向下(top-down),自底向上(bottom-up)和融合分离(fusing-splitting),它们主要用来检测小物体,大物体和中型物体。于是设计了三种不同架构的FPN,并提出了一种新颖的混合特征金字塔网络(MFPN),该网络通过将这三种FPN组装成并行多分支架构并混合这些特征来继承这三种FPN的优点。MFPN可以显著增强one-stage和two-stage基于FPN的检测器,其MS-COCO基准上的平均精度(AP)大约增加2%,而在运行时间延迟方面的牺牲很小。

Our MFPN performs best: detecting objects of small-size, medium-size and large-size with the highest IoU. Green boxes: ground truth, Red boxes: detection result.

四种FPN的性能对比:


【5】带有注意力RPN和多关系检测器的小样本目标检测网络和数据集

《Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector》

时间:20191224

作者团队:中国香港科技大学&腾讯

链接:https://arxiv.org/abs/1908.01998v2

代码和数据集:https://github.com/fanq15/Few-Shot-Object-Detection-Dataset

注:提出适合小样本(Few-shot)目标检测网络,在多个数据集上表现SOTA!并开源第一个含1000个类别的FSOD数据集

Multi-Relation Detector


【6】Scale Match(SM):用于"小人"(Tiny Person)检测

《Scale Match for Tiny Person Detection》

时间:20191224

作者团队:中国科学院大学

链接:https://arxiv.org/abs/1912.10664

代码和数据集:https://github.com/ucas-vg/TinyBenchmark

注:终于看到小目标检测的研究论文,提出TinyPerson数据集(物体小于20个像素),也提出小目标检测新方法SM,即将开源!

ScaleMatch和TinyPerson的介绍详见:拯救小目标检测!Tiny Person数据集和SM尺度匹配小目标检测新方法

Scale Match


【7】O^2-DNet:将旋转目标视为一对中间线

《Oriented Objects as pairs of Middle Lines》

时间:20191225

作者团队:中科院&国科大

链接:https://arxiv.org/abs/1912.10694

注:前有将目标视为点,现有将目标视为一对中间线,O^2-DNet是一个单阶段,anchor-free和无NMS的模型,可以应用在场景文本检测和遥感目标检测上。

O^2-DNet


【8】CR-NAS:用于目标检测的计算重分配

《Computation Reallocation for Object Detection》

时间:20191225(ICLR 2020)

作者团队:商汤科技&悉尼大学

链接:https://arxiv.org/abs/1912.11234

注:CR-NAS(计算重新分配神经网络架构搜索),它可以在目标检测数据集上直接学习跨不同特征分辨率和空间位置的计算重新分配策略。提出了用于阶段和空间重新分配的两级重新分配空间。采用一种新颖的分层搜索程序来应对复杂的搜索空间。

作者将CR-NAS应用于多个backbone并实现持续改进。如CR-ResNet50和CR-MobileNetV2分别比基线高出1.9%和1.7%的COCO AP,而没有任何额外的计算代价。CR-NAS搜索的模型可以用于其他强大的检测neck/head,并可以轻松迁移到其他数据集,例如PASCAL VOC和其他视觉任务,例如实例分割。


【9】Dense RepPoints:表示具有密集点集的视觉对象

《Dense RepPoints: Representing Visual Objects with Dense Point Sets》

时间:20191225

作者团队:北大&港中文&浙大&上交&多伦多大学&MSRA

链接:https://arxiv.org/abs/1912.11473

注:Dense RepPoints是RepPoints(CVPR2019)的升级版,也是Anchor-Free阵营的,其在COCO test上可达45.8mAP,性能优于CenterNet、CornerNet等网络

为了方便下载,我已经将上述论文打包,在 CVer公众号 后台回复:20191226 即可获得打包链接。

本文分享自微信公众号 - CVer(CVerNews),作者:Amusi

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-12-26

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 大盘点 | 2019年4篇目标检测算法最佳综述

    上次整理了近期目标检测比较亮眼的论文汇总,详见: 一文看尽8篇目标检测最新论文(EfficientDet/EdgeNet/ASFF/RoIMix/SCL/EFG...

    Amusi
  • 一文看尽16篇目标检测最新论文(ATSS/MnasFPN/SAPD/CSPNet/DIoU Loss等)

    半个月前 Amusi 整理了 目标检测(Object Detection)较为值得关注的论文:

    Amusi
  • 一文看尽10篇目标检测最新论文(MetaOD/P-RSDet/MatrixNets等)

    恰逢 2020年,本文再次更新近期值得关注的最新检测论文。这次分享的paper将同步推送到 github上,欢迎大家 star/fork(点击阅读原文,也可直接...

    Amusi
  • activiti学习笔记(二) 获取流程实例

    获取流程实例 流程实例获取的源码解析        以获取默认的流程实例为例,来解释整个流程实例的获取过程 文件位置:/org/activiti/engine/...

    cfs
  • xYOLO | 最新最快的实时目标检测

    随着物联网(IoT)、边缘计算和自主机器人等领域的车载视觉处理技术的出现,人们对复合高效卷积神经网络模型在资源受限的硬件设备上进行实时目标检测的需求越来越大。...

    计算机视觉战队
  • 李沐等将目标检测绝对精度提升 5%,不牺牲推理速度

    目标检测无疑是计算机视觉领域最前沿的应用之一,吸引了各个领域诸多研究者的目光。最前沿的检测器,包括类似 RCNN 的单(SSD 或 YOLO)或多阶神经网络都是...

    小小詹同学
  • 经典二叉树

    完全二叉树特点: 1 叶子节点只能出现在最下面两层 2 最下层的叶子一定集中在左部连续位置 3 倒数第二层,如果有叶子节点,一定都集中在右边 4 如果节点度为1...

    用户1154259
  • 李沐等将目标检测绝对精度提升 5%,不牺牲推理速度

    目标检测无疑是计算机视觉领域最前沿的应用之一,吸引了各个领域诸多研究者的目光。最前沿的检测器,包括类似 RCNN 的单(SSD 或 YOLO)或多阶神经网络都是...

    机器之心
  • 剑指Offer面试题:8.斐波那契数列

      很多C/C++/C#/Java语言教科书在讲述递归函数的时候,大多都会用Fibonacci作为例子,因此我们会对这种解法烂熟于心:

    Edison Zhou
  • 部分手机访问https显示空白页

    事情是这样的。。。。。此处省略1000字!

    思梦php

扫码关注云+社区

领取腾讯云代金券