前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【一起学源码-微服务】Nexflix Eureka 源码十二:EurekaServer集群模式源码分析

【一起学源码-微服务】Nexflix Eureka 源码十二:EurekaServer集群模式源码分析

作者头像
一枝花算不算浪漫
发布2020-02-11 10:33:29
3900
发布2020-02-11 10:33:29
举报

前言

前情回顾

上一讲看了Eureka 注册中心的自我保护机制,以及里面提到的bug问题。

哈哈 转眼间都2020年了,这个系列的文章从12.17 一直写到现在,也是不容易哈,每天持续不断学习,输出博客,这一段时间确实收获很多。

今天在公司给组内成员分享了Eureka源码剖析,反响效果还可以,也算是感觉收获了点东西。后面还会继续feign、ribbon、hystrix的源码学习,依然文章连载的形式输出。

本讲目录

本讲主要是EurekaServer集群模式的数据同步讲解,主要目录如下。

目录如下:

  1. eureka server集群机制
  2. 注册、下线、续约的注册表同步机制
  3. 注册表同步三层队列机制详解

技术亮点:

  1. 3层队列机制实现注册表的批量同步需求
源码分析
eureka server集群机制
image.png
image.png

Eureka Server会在注册、下线、续约的时候进行数据同步,将信息同步到其他Eureka Server节点。

可以想象到的是,这里肯定不会是实时同步的,往后继续看注册表的同步机制吧。

注册、下线、续约的注册表同步机制

我们以Eureka Client注册为例,看看Eureka Server是如何同步给其他节点的。

PeerAwareInstanceRegistryImpl.java :

public void register(final InstanceInfo info, final boolean isReplication) {
    int leaseDuration = Lease.DEFAULT_DURATION_IN_SECS;
    if (info.getLeaseInfo() != null && info.getLeaseInfo().getDurationInSecs() > 0) {
        leaseDuration = info.getLeaseInfo().getDurationInSecs();
    }
    super.register(info, leaseDuration, isReplication);
    replicateToPeers(Action.Register, info.getAppName(), info.getId(), info, null, isReplication);
}

private void replicateToPeers(Action action, String appName, String id,
                                  InstanceInfo info /* optional */,
                                  InstanceStatus newStatus /* optional */, boolean isReplication) {
    Stopwatch tracer = action.getTimer().start();
    try {
        if (isReplication) {
            numberOfReplicationsLastMin.increment();
        }
        // If it is a replication already, do not replicate again as this will create a poison replication
        if (peerEurekaNodes == Collections.EMPTY_LIST || isReplication) {
            return;
        }

        for (final PeerEurekaNode node : peerEurekaNodes.getPeerEurekaNodes()) {
            // If the url represents this host, do not replicate to yourself.
            if (peerEurekaNodes.isThisMyUrl(node.getServiceUrl())) {
                continue;
            }
            replicateInstanceActionsToPeers(action, appName, id, info, newStatus, node);
        }
    } finally {
        tracer.stop();
    }
}

private void replicateInstanceActionsToPeers(Action action, String appName,
                                                 String id, InstanceInfo info, InstanceStatus newStatus,
                                                 PeerEurekaNode node) {
    try {
        InstanceInfo infoFromRegistry = null;
        CurrentRequestVersion.set(Version.V2);
        switch (action) {
            case Cancel:
                node.cancel(appName, id);
                break;
            case Heartbeat:
                InstanceStatus overriddenStatus = overriddenInstanceStatusMap.get(id);
                infoFromRegistry = getInstanceByAppAndId(appName, id, false);
                node.heartbeat(appName, id, infoFromRegistry, overriddenStatus, false);
                break;
            case Register:
                node.register(info);
                break;
            case StatusUpdate:
                infoFromRegistry = getInstanceByAppAndId(appName, id, false);
                node.statusUpdate(appName, id, newStatus, infoFromRegistry);
                break;
            case DeleteStatusOverride:
                infoFromRegistry = getInstanceByAppAndId(appName, id, false);
                node.deleteStatusOverride(appName, id, infoFromRegistry);
                break;
        }
    } catch (Throwable t) {
        logger.error("Cannot replicate information to {} for action {}", node.getServiceUrl(), action.name(), t);
    }
}
  1. 注册完成后,调用replicateToPeers(),注意这里面有一个参数isReplication,如果是true,代表是其他Eureka Server节点同步的,false则是EurekaClient注册来的。
  2. replicateToPeers()中一段逻辑,如果isReplication为true则直接跳出,这里意思是client注册来的服务实例需要向其他节点扩散,如果不是则不需要去同步
  3. peerEurekaNodes.getPeerEurekaNodes()拿到所有的Eureka Server节点,循环遍历去同步数据,调用replicateInstanceActionsToPeers()
  4. replicateInstanceActionsToPeers()方法中根据注册、下线、续约等去处理不同逻辑

接下来就是真正执行同步逻辑的地方,这里主要用了三层队列对同步请求进行了batch操作,将请求打成一批批 然后向各个EurekaServer进行http请求。

注册表同步三层队列机制详解

到了这里就是真正进入了同步的逻辑,这里还是以上面注册逻辑为主线,接着上述代码继续往下跟:

PeerEurekaNode.java :

public void register(final InstanceInfo info) throws Exception {
    long expiryTime = System.currentTimeMillis() + getLeaseRenewalOf(info);
    batchingDispatcher.process(
            taskId("register", info),
            new InstanceReplicationTask(targetHost, Action.Register, info, null, true) {
                public EurekaHttpResponse<Void> execute() {
                    return replicationClient.register(info);
                }
            },
            expiryTime
    );
}

这里会执行batchingDispatcher.process() 方法,我们继续点进去,然后会进入 TaskDispatchers.createBatchingTaskDispatcher() 方法,查看其中的匿名内部类中的process()方法:

void process(ID id, T task, long expiryTime) {
        // 将请求都放入到acceptorQueue中
        acceptorQueue.add(new TaskHolder<ID, T>(id, task, expiryTime));
        acceptedTasks++;
    }

将需要同步的Task数据放入到acceptorQueue队列中。 接着回到createBatchingTaskDispatcher()方法中,看下AcceptorExecutor,它的构造函数中会启动一个后台线程:

ThreadGroup threadGroup = new ThreadGroup("eurekaTaskExecutors");

this.acceptorThread = new Thread(threadGroup, new AcceptorRunner(), "TaskAcceptor-" + id);

我们继续跟AcceptorRunner.java:

class AcceptorRunner implements Runnable {
    @Override
    public void run() {
        long scheduleTime = 0;
        while (!isShutdown.get()) {
            try {
                // 处理acceptorQueue队列中的数据
                drainInputQueues();

                int totalItems = processingOrder.size();

                long now = System.currentTimeMillis();
                if (scheduleTime < now) {
                    scheduleTime = now + trafficShaper.transmissionDelay();
                }
                if (scheduleTime <= now) {
                    // 将processingOrder拆分成一个个batch,然后进行操作
                    assignBatchWork();
                    assignSingleItemWork();
                }

                // If no worker is requesting data or there is a delay injected by the traffic shaper,
                // sleep for some time to avoid tight loop.
                if (totalItems == processingOrder.size()) {
                    Thread.sleep(10);
                }
            } catch (InterruptedException ex) {
                // Ignore
            } catch (Throwable e) {
                // Safe-guard, so we never exit this loop in an uncontrolled way.
                logger.warn("Discovery AcceptorThread error", e);
            }
        }
    }

    private void drainInputQueues() throws InterruptedException {
        do {
            drainAcceptorQueue();

            if (!isShutdown.get()) {
                // If all queues are empty, block for a while on the acceptor queue
                if (reprocessQueue.isEmpty() && acceptorQueue.isEmpty() && pendingTasks.isEmpty()) {
                    TaskHolder<ID, T> taskHolder = acceptorQueue.poll(10, TimeUnit.MILLISECONDS);
                    if (taskHolder != null) {
                        appendTaskHolder(taskHolder);
                    }
                }
            }
        } while (!reprocessQueue.isEmpty() || !acceptorQueue.isEmpty() || pendingTasks.isEmpty());
    }

    private void drainAcceptorQueue() {
        while (!acceptorQueue.isEmpty()) {
            // 将acceptor队列中的数据放入到processingOrder队列中去,方便后续拆分成batch
            appendTaskHolder(acceptorQueue.poll());
        }
    }

    private void appendTaskHolder(TaskHolder<ID, T> taskHolder) {
        if (isFull()) {
            pendingTasks.remove(processingOrder.poll());
            queueOverflows++;
        }
        TaskHolder<ID, T> previousTask = pendingTasks.put(taskHolder.getId(), taskHolder);
        if (previousTask == null) {
            processingOrder.add(taskHolder.getId());
        } else {
            overriddenTasks++;
        }
    }
            
}

认真跟这里面的代码,可以看到这里是将上面的acceptorQueue放入到processingOrder, 其中processingOrder也是一个队列。

AcceptorRunner.javarun()方法中,还会调用assignBatchWork()方法,这里面就是将processingOrder打成一个个batch,接着看代码:

void assignBatchWork() {
            if (hasEnoughTasksForNextBatch()) {
                if (batchWorkRequests.tryAcquire(1)) {
                    long now = System.currentTimeMillis();
                    int len = Math.min(maxBatchingSize, processingOrder.size());
                    List<TaskHolder<ID, T>> holders = new ArrayList<>(len);
                    while (holders.size() < len && !processingOrder.isEmpty()) {
                        ID id = processingOrder.poll();
                        TaskHolder<ID, T> holder = pendingTasks.remove(id);
                        if (holder.getExpiryTime() > now) {
                            holders.add(holder);
                        } else {
                            expiredTasks++;
                        }
                    }
                    if (holders.isEmpty()) {
                        batchWorkRequests.release();
                    } else {
                        batchSizeMetric.record(holders.size(), TimeUnit.MILLISECONDS);
                        // 将批量数据放入到batchWorkQueue中
                        batchWorkQueue.add(holders);
                    }
                }
            }
        }

        private boolean hasEnoughTasksForNextBatch() {
            if (processingOrder.isEmpty()) {
                return false;
            }
            // 默认maxBufferSize为250
            if (pendingTasks.size() >= maxBufferSize) {
                return true;
            }

            TaskHolder<ID, T> nextHolder = pendingTasks.get(processingOrder.peek());
            // 默认maxBatchingDelay为500ms
            long delay = System.currentTimeMillis() - nextHolder.getSubmitTimestamp();
            return delay >= maxBatchingDelay;
        }

这里加入batch的规则是:maxBufferSize 默认为250 maxBatchingDelay 默认为500ms,打成一个个batch后就开始发送给server端。至于怎么发送 我们接着看 PeerEurekaNode.java, 我们在最开始调用register()方法就是调用PeerEurekaNode.register(), 我们来看看它的构造方法:

PeerEurekaNode(PeerAwareInstanceRegistry registry, String targetHost, String serviceUrl,
                                     HttpReplicationClient replicationClient, EurekaServerConfig config,
                                     int batchSize, long maxBatchingDelayMs,
                                     long retrySleepTimeMs, long serverUnavailableSleepTimeMs) {
    this.registry = registry;
    this.targetHost = targetHost;
    this.replicationClient = replicationClient;

    this.serviceUrl = serviceUrl;
    this.config = config;
    this.maxProcessingDelayMs = config.getMaxTimeForReplication();

    String batcherName = getBatcherName();
    ReplicationTaskProcessor taskProcessor = new ReplicationTaskProcessor(targetHost, replicationClient);
    this.batchingDispatcher = TaskDispatchers.createBatchingTaskDispatcher(
            batcherName,
            config.getMaxElementsInPeerReplicationPool(),
            batchSize,
            config.getMaxThreadsForPeerReplication(),
            maxBatchingDelayMs,
            serverUnavailableSleepTimeMs,
            retrySleepTimeMs,
            taskProcessor
    );
}

这里会实例化一个ReplicationTaskProcessor.java, 我们跟进去,发下它是实现TaskProcessor的,所以一定会执行此类中的process()方法,执行方法如下:

public ProcessingResult process(List<ReplicationTask> tasks) {
    ReplicationList list = createReplicationListOf(tasks);
    try {
        EurekaHttpResponse<ReplicationListResponse> response = replicationClient.submitBatchUpdates(list);
        int statusCode = response.getStatusCode();
        if (!isSuccess(statusCode)) {
            if (statusCode == 503) {
                logger.warn("Server busy (503) HTTP status code received from the peer {}; rescheduling tasks after delay", peerId);
                return ProcessingResult.Congestion;
            } else {
                // Unexpected error returned from the server. This should ideally never happen.
                logger.error("Batch update failure with HTTP status code {}; discarding {} replication tasks", statusCode, tasks.size());
                return ProcessingResult.PermanentError;
            }
        } else {
            handleBatchResponse(tasks, response.getEntity().getResponseList());
        }
    } catch (Throwable e) {
        if (isNetworkConnectException(e)) {
            logNetworkErrorSample(null, e);
            return ProcessingResult.TransientError;
        } else {
            logger.error("Not re-trying this exception because it does not seem to be a network exception", e);
            return ProcessingResult.PermanentError;
        }
    }
    return ProcessingResult.Success;
}

这里面是将List<ReplicationTask> tasks 通过submitBatchUpdate() 发送给server端。 server端在PeerReplicationResource.batchReplication()去处理,实际上就是循环调用ApplicationResource.addInstance() 方法,又回到了最开始注册的方法。

到此 EurekaServer同步的逻辑就结束了,这里主要是三层队列的数据结构很绕,通过一个batchList去批量同步数据的。

注意这里还有一个很重要的点,就是Client注册时调用addInstance()方法,这里到了server端PeerAwareInstanceRegistryImpl会执行同步其他EurekaServer逻辑。

而EurekaServer同步注册接口仍然会调用addInstance()方法,这里难不成就死循环调用了?当然不是,addInstance()中也有个参数:isReplication, 在最后调用server端方法的时候如下:registry.register(info, "true".equals(isReplication));

我们知道,EurekaClient在注册的时候isReplication传递为空,所以这里为false,而Server端同步的时候调用:

PeerReplicationResource:

private static Builder handleRegister(ReplicationInstance instanceInfo, ApplicationResource applicationResource) {
        applicationResource.addInstance(instanceInfo.getInstanceInfo(), REPLICATION);
        return new Builder().setStatusCode(Status.OK.getStatusCode());
    }

这里的REPLICATION 为true

另外在AbstractJersey2EurekaHttpClient中发送register请求的时候,有个addExtraHeaders()方法,如下图:

image.png
image.png

如果是使用的Jersey2ReplicationClient发送的,那么header中的x-netflix-discovery-replication配置则为true,在后面执行注册的addInstance()方法中会接收这个参数的:

总结

仍然一图流,文中解析的内容都包含在这张图中了:

11_Eureka注册中心集群同步原理.png
11_Eureka注册中心集群同步原理.png

申明

本文章首发自本人博客:https://www.cnblogs.com/wang-meng 和公众号:壹枝花算不算浪漫,如若转载请标明来源!

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2020-01-03 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
    • 前情回顾
      • 本讲目录
        • 源码分析
          • eureka server集群机制
            • 注册、下线、续约的注册表同步机制
              • 注册表同步三层队列机制详解
              • 总结
              • 申明
              相关产品与服务
              批量计算
              批量计算(BatchCompute,Batch)是为有大数据计算业务的企业、科研单位等提供高性价比且易用的计算服务。批量计算 Batch 可以根据用户提供的批处理规模,智能地管理作业和调动其所需的最佳资源。有了 Batch 的帮助,您可以将精力集中在如何分析和处理数据结果上。
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档