前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >ClickHouse为何如此之快?

ClickHouse为何如此之快?

作者头像
Nauu
发布2020-02-13 11:47:58
4.1K0
发布2020-02-13 11:47:58
举报
文章被收录于专栏:ClickHouse的秘密基地

黑魔法, 也是黑科技

老板:"你听说过ClickHouse吗?简称叫CK!!!"

我:"听说过,不是个内裤品牌吗?谁没听说过?你想干什么?!!"

老板:"不是内裤!!是一款OLAP数据库,给你看,这是它的测试报告"

我:"假的吧,单机性能就这么高?怎么可能!!!"

老板:"不信你自己试试!!"

一番捣鼓之后

我:"。。。。。。。"

颠覆三观、陷入无限思考,心中只有三个字:

这是什么鬼!!

上述是我的一段亲身经历。

很多初识CH的人,内心都会经历这么几个阶段:

相遇,会被它那惊叹的性能所吸引;

疑惑,开始质疑它的真实性;

困惑,在亲自论证了可靠性后,身体虽然是相信了,但内心依然觉得不可思议,不明就里。

于是乎,为什么ClickHouse这么快? 渐渐成了一个不解之谜。

作为一个拥有ClickHouse信仰标签的忠实粉丝,我自然也是追寻谜底的一份子。在我苦苦寻觅许久之后,今天,终于被我找到了答案。所以特地拿来与各位分享,谜底就在下面:

翻译过来的意思是:

这是纯魔法,是由前苏联科学家提供的技术.

他们曾经用来制造火箭.

看到没?!这就是ClickHouse的黑魔法。

 好吧,这其实是我今天刚看到的一则笑话,来自于中科院计算所博士,郑天祺 (Amos Bird),同时他也是一名ClickHouse的Committer。

 虽然刚才的谜底是假的,但疑问是真真切切存在的,为什么ClickHouse这么快?

已经有很多人,对这个问题做出过科学合理的解释。

比如有人说,因为ClickHouse是列存数据库,所以快;

也有人说,因为ClickHouse使用了向量化引擎,所以快。

这些解释都站得住脚,但是依然不能消除我的疑问。因为这些技术并不是秘密,世面上有很多数据库同样使用了这些技术,但是依然被ClickHouse秒杀呀?

所以,今天我想从另外一个角度,来探讨一下ClickHouse的黑魔法,它到底是什么。

要找到问题的谜底,其实有一个很简单的办法,那就是听听作者们自己是怎么说的呗。

画外音:"说的轻巧,去哪里找作者倾诉呢?"

所以说,勤奋的人们总是容易被幸运眷顾,你看这不: 恰好,在2019的年末,在北京举行了 中国大数据技术大会(BDTC 2019);

恰好又,这个大会邀请了 ClickHouse项目的创始人兼开源社区创始人,Alexey Milovidov

恰恰好又,Alexey Milovidov 在大会上做了一次主题分享;

恰恰恰好又,这个分享主题就叫做 The Secrets of ClickHouse Performance Optimizations

各位说说,怎么就这么巧呢?简直做梦都要笑醒的节奏啊。

 既然作者已经做了分享,那我就从这次分享出发,对ClickHouse的黑魔法做一番分析总结吧。(文末会附上Alexey Milovidov的分享视频)

开篇伊始,Alexey Milovidov就抛出了一个灵魂的质问:

做设计的原则,到底应该是 自顶向下 的去设计,还是应该 自下而上 的去设计 ?

在传统观念中,或者说在我的观念中,自然是 自顶向下的,做架构设计首先自然做的是顶层设计:

  • 事先应该做高层次的抽象设计;
  • 规划好各个模块的职责、切分的界面;
  • 分配好工程结构、包结构,最好能再来一些设计图,等等。

而ClickHouse的设计,则采用了 自下而上

ClickHouse的原型系统早在2008年就诞生了(有机会可以专门写一篇,聊聊关于ClickHouse的诞生历程),在诞生之初,它并没有宏伟的规划。相反,它的目的很单纯,就是希望能以最快的速度进行GROUP BY查询和过滤。

他们是如何实践 自下而上 设计的呢?

着眼硬件,先想后做

从硬件功能层面着手设计,在设计伊始,就至少需要想清楚这么几个问题:

  1. 我们将要使用的硬件水平是怎样的?包括CPU、内存、硬盘、网络等等;
  2. 在这样的硬件上,我们需要达到怎样的性能?包括延迟、吞吐量等等;
  3. 我们准备使用怎样的数据结构?包括String、HashTable、Vector等等;
  4. 选择的这些数据结构,在我们的硬件上会如何工作?

如果你能想清楚上面的问题,那么在动手实现功能之前,就已经能够计算出粗略的性能了。

所以,基于将硬件功效最大化的目的,ClickHouse会在内存中进行GROUP BY,并且使用HashTable装载数据。于此同时,他们非常在意CPU L3级别的缓存,因为一次L3 cache miss会带来70~100纳秒的延迟。这意味着,在单核CPU上,它会浪费4000万/每秒的运算;而在一个32线程的CPU上,则可能会浪费5亿/每秒的运算。

所以别小看这些细节,一点一滴的将它们累加起来,数据是非常可观的。也正因为注意了这些细节,所以ClickHouse在基准查询中,能做到1.75亿/每秒的数据扫描性能。

算法在前,抽象在后

最近常听人念叨,"有时候,选择比努力更重要"。 确实,路线选错了,再努力也是白搭。

在ClickHouse的底层实现中,经常会面对这些场景:字符串子串查询;数组排序;使用HashTable等。

如何才能在实现性能的最大化呢?算法的选择是重中之重!!!

以字符串为例,有一本专门讲解字符串搜索的书,叫做 "Handbook of Exact String Matching Algorithms",这本书列举了35种常见的字符串搜索算法,你猜ClickHouse使用了其中的哪一种?

一种都没用!! 为什么?因为性能不够快。

在字符串搜索方面,针对不同的场景,ClickHouse最终选择了这些算法:

对于常量,使用Volnitsky算法;

对于非常量,使用CPU的向量化执行SIMD,暴力优化;

正则匹配使用re2hyperscan算法。

勇于尝鲜,不行就换

除了字符串之外,其余的场景也与它类似,ClickHouse会使用最合适、最快的算法。如果世面上出现了,号称性能强大的新算法,他也会将其纳入,进行验证。如果效果可行,就保留使用;如果性能不尽人意,就将其抛弃。

特定场景,特殊优化

针对在同一个场景的,不同的状况,选择使用不同的实现方式,尽可能的将性能最大化。关于这一点,其实在刚才介绍字符串查询时候,针对不同场景,选择不同的算法就能体现了。类似的例子还有很多,例如去重计数uniqCombined函数,根据数据量的不同,会选择不同的算法:

当数据量较小的时候,会选择Array保存;

当数据量中等时候,则会选择HashSet;

而当数据量很大的时候,则使用HyperLogLog算法。

包括对于数据结构比较清晰的场景,会通过代码生成技术,实现循环展开,以减少循环次数。

还包括大家熟知的大杀器,向量化执行了。SIMD被广泛的应用于文本转换、数据过滤、数据解压和JSON转换等场景。利用寄存器暴力优化,相较于单纯的使用CPU而言,也算是一种降维打击了。

持续测试,持续改进

如果只是单纯的,在上述的细节上下功夫,还不足以构建出如此强大的ClickHouse,这里还需要拥有一个能够持续验证、持续改进的机制。由于Yandex的天然优势,ClickHouse经常会使用真实的数据做测试,这一点很好的保证了测试场景的真实性。于此同时,ClickHouse也是我见过发版速度最快的开源软件了,差不多每个月都能发布一个版本,没有一个可靠的持续集成环境,这一点也是做不到的。也正因为拥有这样的发版频率,他们能够快速迭代、快速改进。

好了,上述这些,就是我对Alexey Milovidov这次分享的一些总结和个人理解了。

最后,就以ClickHouse的口号,作为结束吧:

The ClickHouse Style:

As efficient as possible

As fast as possible

正如口号所言,他们做到了。

所以,ClickHouse的黑魔法并不是一项单一的技术,而是一种自底向上的,追求极致性能的设计思路。

查看阅读原文,即可找到分享视频地址。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-01-11,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 ClickHouse的秘密基地 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
数据库
云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档