前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >动手学深度学习(十) NLP 语言模型与数据集

动手学深度学习(十) NLP 语言模型与数据集

作者头像
致Great
发布2020-02-25 16:41:16
4840
发布2020-02-25 16:41:16
举报
文章被收录于专栏:程序生活

语言模型

一段自然语言文本可以看作是一个离散时间序列,给定一个长度为

T
T

的词的序列

w_1, w_2, \ldots, w_T
w_1, w_2, \ldots, w_T

,语言模型的目标就是评估该序列是否合理,即计算该序列的概率:

P(w_1, w_2, \ldots, w_T).
P(w_1, w_2, \ldots, w_T).

本节我们介绍基于统计的语言模型,主要是

n
n

元语法(

n
n

-gram)。在后续内容中,我们将会介绍基于神经网络的语言模型。

语言模型

假设序列

w_1, w_2, \ldots, w_T
w_1, w_2, \ldots, w_T

中的每个词是依次生成的,我们有

?(?1,?2,…,??)=∏?=1??(??∣?1,…,??−1)=?(?1)?(?2∣?1)⋯?(??∣?1?2⋯??−1)

例如,一段含有4个词的文本序列的概率

P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3).
P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3).

语言模型的参数就是词的概率以及给定前几个词情况下的条件概率。设训练数据集为一个大型文本语料库,如维基百科的所有条目,词的概率可以通过该词在训练数据集中的相对词频来计算,例如,

w_1
w_1

的概率可以计算为:

\hat P(w_1) = \frac{n(w_1)}{n}
\hat P(w_1) = \frac{n(w_1)}{n}

其中

n(w_1)
n(w_1)

为语料库中以

w_1
w_1

作为第一个词的文本的数量,

n
n

为语料库中文本的总数量。

类似的,给定

w_1
w_1

情况下,

w_2
w_2

的条件概率可以计算为:

\hat P(w_2 \mid w_1) = \frac{n(w_1, w_2)}{n(w_1)}
\hat P(w_2 \mid w_1) = \frac{n(w_1, w_2)}{n(w_1)}

其中

n(w_1, w_2)
n(w_1, w_2)

为语料库中以

w_1
w_1

作为第一个词,

w_2
w_2

作为第二个词的文本的数量。

n元语法

序列长度增加,计算和存储多个词共同出现的概率的复杂度会呈指数级增加。

n
n

元语法通过马尔可夫假设简化模型,马尔科夫假设是指一个词的出现只与前面

n
n

个词相关,即

n
n

阶马尔可夫链(Markov chain of order

n
n

),如果

n=1
n=1

,那么有

P(w_3 \mid w_1, w_2) = P(w_3 \mid w_2)
P(w_3 \mid w_1, w_2) = P(w_3 \mid w_2)

。基于

n-1
n-1

阶马尔可夫链,我们可以将语言模型改写为

P(w_1, w_2, \ldots, w_T) = \prod_{t=1}^T P(w_t \mid w_{t-(n-1)}, \ldots, w_{t-1}) .
P(w_1, w_2, \ldots, w_T) = \prod_{t=1}^T P(w_t \mid w_{t-(n-1)}, \ldots, w_{t-1}) .

以上也叫

n
n

元语法(

n
n

-grams),它是基于

n - 1
n - 1

阶马尔可夫链的概率语言模型。例如,当

n=2
n=2

时,含有4个词的文本序列的概率就可以改写为:

\begin{align*} P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3)\\ &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) \end{align*}
\begin{align*} P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3)\\ &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) \end{align*}

n
n

分别为1、2和3时,我们将其分别称作一元语法(unigram)、二元语法(bigram)和三元语法(trigram)。例如,长度为4的序列

w_1, w_2, w_3, w_4
w_1, w_2, w_3, w_4

在一元语法、二元语法和三元语法中的概率分别为

\begin{aligned} P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2) P(w_3) P(w_4) ,\\ P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) ,\\ P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_2, w_3) . \end{aligned}
\begin{aligned} P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2) P(w_3) P(w_4) ,\\ P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) ,\\ P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_2, w_3) . \end{aligned}

n
n

较小时,

n
n

元语法往往并不准确。例如,在一元语法中,由三个词组成的句子“你走先”和“你先走”的概率是一样的。然而,当

n
n

较大时,

n
n

元语法需要计算并存储大量的词频和多词相邻频率。

思考:

n
n

元语法可能有哪些缺陷?

  1. 参数空间过大
  2. 数据稀疏

语言模型数据集

读取数据集

代码语言:javascript
复制
with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:
    corpus_chars = f.read()
print(len(corpus_chars))
print(corpus_chars[: 40])
corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
corpus_chars = corpus_chars[: 10000]
代码语言:javascript
复制
63282
想要有直升机
想要和你飞到宇宙去
想要和你融化在一起
融化在宇宙里
我每天每天每

建立字符索引

代码语言:javascript
复制
idx_to_char = list(set(corpus_chars)) # 去重,得到索引到字符的映射
char_to_idx = {char: i for i, char in enumerate(idx_to_char)} # 字符到索引的映射
vocab_size = len(char_to_idx)
print(vocab_size)

corpus_indices = [char_to_idx[char] for char in corpus_chars]  # 将每个字符转化为索引,得到一个索引的序列
sample = corpus_indices[: 20]
print('chars:', ''.join([idx_to_char[idx] for idx in sample]))
print('indices:', sample)
代码语言:javascript
复制
1027
chars: 想要有直升机 想要和你飞到宇宙去 想要和
indices: [1022, 648, 1025, 366, 208, 792, 199, 1022, 648, 641, 607, 625, 26, 155, 130, 5, 199, 1022, 648, 641]

定义函数load_data_jay_lyrics,在后续章节中直接调用。

代码语言:javascript
复制
def load_data_jay_lyrics():
    with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:
        corpus_chars = f.read()
    corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
    corpus_chars = corpus_chars[0:10000]
    idx_to_char = list(set(corpus_chars))
    char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)])
    vocab_size = len(char_to_idx)
    corpus_indices = [char_to_idx[char] for char in corpus_chars]
    return corpus_indices, char_to_idx, idx_to_char, vocab_size

时序数据的采样

在训练中我们需要每次随机读取小批量样本和标签。与之前章节的实验数据不同的是,时序数据的一个样本通常包含连续的字符。假设时间步数为5,样本序列为5个字符,即“想”“要”“有”“直”“升”。该样本的标签序列为这些字符分别在训练集中的下一个字符,即“要”“有”“直”“升”“机”,即

X
X

=“想要有直升”,

Y
Y

=“要有直升机”。

现在我们考虑序列“想要有直升机,想要和你飞到宇宙去”,如果时间步数为5,有以下可能的样本和标签:

X
X

:“想要有直升”,

Y
Y

:“要有直升机”

X
X

:“要有直升机”,

Y
Y

:“有直升机,”

X
X

:“有直升机,”,

Y
Y

:“直升机,想”

  • ...
X
X

:“要和你飞到”,

Y
Y

:“和你飞到宇”

X
X

:“和你飞到宇”,

Y
Y

:“你飞到宇宙”

X
X

:“你飞到宇宙”,

Y
Y

:“飞到宇宙去”

可以看到,如果序列的长度为

T
T

,时间步数为

n
n

,那么一共有

T-n
T-n

个合法的样本,但是这些样本有大量的重合,我们通常采用更加高效的采样方式。我们有两种方式对时序数据进行采样,分别是随机采样和相邻采样。

随机采样

下面的代码每次从数据里随机采样一个小批量。其中批量大小batch_size是每个小批量的样本数,num_steps是每个样本所包含的时间步数。 在随机采样中,每个样本是原始序列上任意截取的一段序列,相邻的两个随机小批量在原始序列上的位置不一定相毗邻。

代码语言:javascript
复制
import torch
import random
def data_iter_random(corpus_indices, batch_size, num_steps, device=None):
    # 减1是因为对于长度为n的序列,X最多只有包含其中的前n - 1个字符
    num_examples = (len(corpus_indices) - 1) // num_steps  # 下取整,得到不重叠情况下的样本个数
    example_indices = [i * num_steps for i in range(num_examples)]  # 每个样本的第一个字符在corpus_indices中的下标
    random.shuffle(example_indices)

    def _data(i):
        # 返回从i开始的长为num_steps的序列
        return corpus_indices[i: i + num_steps]
    if device is None:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    for i in range(0, num_examples, batch_size):
        # 每次选出batch_size个随机样本
        batch_indices = example_indices[i: i + batch_size]  # 当前batch的各个样本的首字符的下标
        X = [_data(j) for j in batch_indices]
        Y = [_data(j + 1) for j in batch_indices]
        yield torch.tensor(X, device=device), torch.tensor(Y, device=device)

测试一下这个函数,我们输入从0到29的连续整数作为一个人工序列,设批量大小和时间步数分别为2和6,打印随机采样每次读取的小批量样本的输入X和标签Y

代码语言:javascript
复制
my_seq = list(range(30))
for X, Y in data_iter_random(my_seq, batch_size=2, num_steps=6):
    print('X: ', X, '\nY:', Y, '\n')
代码语言:javascript
复制
X:  tensor([[ 6,  7,  8,  9, 10, 11],
        [12, 13, 14, 15, 16, 17]]) 
Y: tensor([[ 7,  8,  9, 10, 11, 12],
        [13, 14, 15, 16, 17, 18]]) 

X:  tensor([[ 0,  1,  2,  3,  4,  5],
        [18, 19, 20, 21, 22, 23]]) 
Y: tensor([[ 1,  2,  3,  4,  5,  6],
        [19, 20, 21, 22, 23, 24]]) 

相邻采样

在相邻采样中,相邻的两个随机小批量在原始序列上的位置相毗邻。

代码语言:javascript
复制
def data_iter_consecutive(corpus_indices, batch_size, num_steps, device=None):
    if device is None:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    corpus_len = len(corpus_indices) // batch_size * batch_size  # 保留下来的序列的长度
    corpus_indices = corpus_indices[: corpus_len]  # 仅保留前corpus_len个字符
    indices = torch.tensor(corpus_indices, device=device)
    indices = indices.view(batch_size, -1)  # resize成(batch_size, )
    batch_num = (indices.shape[1] - 1) // num_steps
    for i in range(batch_num):
        i = i * num_steps
        X = indices[:, i: i + num_steps]
        Y = indices[:, i + 1: i + num_steps + 1]
        yield X, Y

同样的设置下,打印相邻采样每次读取的小批量样本的输入X和标签Y。相邻的两个随机小批量在原始序列上的位置相毗邻。

代码语言:javascript
复制
for X, Y in data_iter_consecutive(my_seq, batch_size=2, num_steps=6):
    print('X: ', X, '\nY:', Y, '\n')
代码语言:javascript
复制
X:  tensor([[ 0,  1,  2,  3,  4,  5],
        [15, 16, 17, 18, 19, 20]]) 
Y: tensor([[ 1,  2,  3,  4,  5,  6],
        [16, 17, 18, 19, 20, 21]]) 

X:  tensor([[ 6,  7,  8,  9, 10, 11],
        [21, 22, 23, 24, 25, 26]]) 
Y: tensor([[ 7,  8,  9, 10, 11, 12],
        [22, 23, 24, 25, 26, 27]]) 

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 语言模型
    • 语言模型
      • n元语法
      • 语言模型数据集
        • 读取数据集
          • 建立字符索引
            • 时序数据的采样
              • 随机采样
              • 相邻采样
          相关产品与服务
          NLP 服务
          NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档