前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >R语言模拟疫情传播-RVirusBroadcast

R语言模拟疫情传播-RVirusBroadcast

作者头像
一只羊
发布2020-02-26 11:49:29
8050
发布2020-02-26 11:49:29
举报
文章被收录于专栏:生信了生信了

本文用RVirusBroadcast展示模拟的疫情数据

本文篇幅较长,分为以下几个部分:

  • 前言
  • 效果展示
  • 小结
  • 附录:RVirusBroadcast代码

前言

前几天微博的一个热搜主题是“计算机仿真程序告诉你为什么现在还没到出门的时候!!!”,该视频用模拟的疫情数据告诉大家“不要随便出门(宅在家)”对战胜疫情很重要,生动形象,广受好评。

所用的程序叫VirusBroadcast,源码已经公开,是用Java写的。鉴于画图是R语言的优势,所以笔者在读过源码后,写了一个VirusBroadcast程序的R语言版本,暂且叫做RVirusBroadcast。与VirusBroadcast相比,RVirusBroadcast所用的模型和逻辑大体不变,只是在少许细节上做了修改。 (为了防止上面的超链接被过滤掉而打不开,文末也放上了明文链接)

效果展示

下面两段视频是RVirusBroadcast用模拟的数据展示的效果,由于笔者的电脑性能实在一般,所以暂时只模拟了30天的数据。请再次注意下面两段视频的数据是模拟生成的,纯属虚构,不具有现实意义,仅供电脑模拟实验所用。

其他条件不变,当人们随意移动时,病毒传播迅速,疫情很难控制
其他条件不变,当人们控制自己的移动时,病毒传播缓慢,疫情逐渐得到控制

小结

诚如VirusBroadcast的作者所说,现在的模型是一个很简单的模型,所用的数据也是模拟生成的,还需优化改进。朋友们如果有兴趣,可以自行查阅复制下文中的R代码,自由修改。

如果您对代码有任何意见或建议,请联系hxj5hxj5@126.com。谢谢!

参考

[1] “计算机仿真程序告诉你为什么现在还没到出门的时候” 视频地址: https://www.bilibili.com/video/av86478875?spm_id_from=333.788.b_765f64657363.1 [2] VirusBroadcast (Java)程序源码: https://github.com/KikiLetGo/VirusBroadcast

附录:RVirusBroadcast代码

代码语言:javascript
复制
###name:RVirusBroadcast
###author:hxj7(hxj5hxj5@126.com)
###version:202002010
###note:本程序是"VirusBroadcast (in Java)"的R版本
###      VirusBroadcast (in Java) 项目链接:
###      https://github.com/KikiLetGo/VirusBroadcast/tree/master/src

library(tibble)
library(dplyr)

########## 模拟参数 ##########
ORIGINAL_COUNT <- 50     # 初始感染数量
BROAD_RATE <- 0.8        # 传播率
SHADOW_TIME <- 140       # 潜伏时间,14天为140
HOSPITAL_RECEIVE_TIME <- 10   # 医院收治响应时间
BED_COUNT <- 1000        # 医院床位

MOVE_WISH_MU <- -0.99   # 流动意向平均值,建议调整范围:[-0.99,0.99];
                       #   -0.99 人群流动最慢速率,甚至完全控制疫情传播;
                       #   0.99为人群流动最快速率, 可导致全城感染

CITY_PERSON_SIZE <- 5000    # 城市总人口数量
FATALITY_RATE <- 0.02       # 病死率,根据2月6日数据估算(病死数/确诊数)为0.02
SHADOW_TIME_SIGMA <- 25     # 潜伏时间方差
CURED_TIME <- 50            # 治愈时间均值,从入院开始计时
CURED_SIGMA <- 10           # 治愈时间标准差
DIE_TIME <- 300             # 死亡时间均值,30天,从发病(确诊)时开始计时
DIE_SIGMA <- 50             # 死亡时间标准差

CITY_WIDTH <- 700           # 城市大小即窗口边界,限制不允许出城
CITY_HEIGHT <- 800

MAX_TRY <- 300             # 最大模拟次数,300代表30天

########## 生成人群点,用不同颜色代表不同健康状态。 ##########
# 用正态分布刻画人群点的分布
CITY_CENTERX <- 400         # x轴的mu值
CITY_CENTERY <- 400
PERSON_DIST_X_SIGMA <- 100  # x轴的sigma值
PERSON_DIST_Y_SIGMA <- 100

# 市民状态应该需要细分,虽然有的状态暂未纳入模拟,但是细分状态应该保留
STATE_NORMAL <- 0            # 正常人,未感染的健康人
STATE_SUSPECTED <- STATE_NORMAL + 1   # 有暴露感染风险
STATE_SHADOW <- STATE_SUSPECTED + 1   # 潜伏期
STATE_CONFIRMED <- STATE_SHADOW + 1   # 发病且已确诊为感染病人
STATE_FREEZE <- STATE_CONFIRMED + 1   # 隔离治疗,禁止位移
STATE_DEATH <- STATE_FREEZE + 1    # 病死者
STATE_CURED <- STATE_DEATH + 1   # 治愈数量用于计算治愈出院后归还床位数量,该状态是否存续待定

worldtime <- 0
NTRY_PER_DAY <- 10   # 一天模拟几次
getday <- function(t) (t - 1) %/% NTRY_PER_DAY + 1

# 生成人群数据
format_coord <- function(coord, boundary) {
  if (coord < 0) return(runif(1, 0, 10))
  else if (coord > boundary) return(runif(1, boundary - 10, boundary))
  else return(coord)
}
set.seed(123)
people <- tibble(
  id = 1:CITY_PERSON_SIZE,
  x = sapply(rnorm(CITY_PERSON_SIZE, CITY_CENTERX, PERSON_DIST_X_SIGMA), 
           format_coord, boundary = CITY_WIDTH),    # (x, y) 为人群点坐标
  y = sapply(rnorm(CITY_PERSON_SIZE, CITY_CENTERY, PERSON_DIST_Y_SIGMA), 
           format_coord, boundary = CITY_HEIGHT),
  state = STATE_NORMAL,    # 健康状态
  infected_time = 0,     # 感染时刻
  confirmed_time = 0,    # 确诊时刻
  freeze_time = 0,       # 隔离时刻
  cured_moment = 0,      # 痊愈时刻,为0代表不确定
  die_moment = 0         # 死亡时刻,为0代表未确定,-1代表不会病死
) %>%
  mutate(tx = rnorm(CITY_PERSON_SIZE, x, PERSON_DIST_X_SIGMA),  # target x
         ty = rnorm(CITY_PERSON_SIZE, y, PERSON_DIST_Y_SIGMA),
         has_target = T, is_arrived = F)

# 随机选择初始感染者
peop_id <- sample(people$id, ORIGINAL_COUNT)
people$state[peop_id] <- STATE_SHADOW
people$infected_time[peop_id] <- worldtime
people$confirmed_time[peop_id] <- worldtime + 
  max(rnorm(length(peop_id), SHADOW_TIME / 2, SHADOW_TIME_SIGMA), 0)

########## 生成床位点 ##########
HOSPITAL_X <- 720   # 第一张床位的x坐标
HOSPITAL_Y <- 80    # 第一张床位的y坐标
NBED_PER_COLUMN <- 100   # 医院每一列有多少张床位
BED_ROW_SPACE <- 6       # 一行中床位的间距
BED_COLUMN_SPACE <- 6    # 一列中床位的间距

bed_ncolumn <- ceiling(BED_COUNT / NBED_PER_COLUMN)
hosp_beds <- tibble(id = 1, x = 0, y = 0, is_empty = T, state = STATE_NORMAL) %>% 
  slice(-1)
if (BED_COUNT > 0) {
  hosp_beds <- tibble(
    id = 1:BED_COUNT,
    x = HOSPITAL_X + rep(((1:bed_ncolumn) - 1) * BED_ROW_SPACE, 
                       each = NBED_PER_COLUMN)[1:BED_COUNT],
    y = HOSPITAL_Y + 10 - BED_COLUMN_SPACE + 
      rep((1:NBED_PER_COLUMN) * BED_COLUMN_SPACE, bed_ncolumn)[1:BED_COUNT],
    is_empty = T,
    person_id = 0       # 占用床位的患者的序号,床位为空时为0
  )
}

########## 准备画图的数据 ##########
npeople_total <- CITY_PERSON_SIZE
npeople_shadow <- ORIGINAL_COUNT
npeople_confirmed <- npeople_freeze <- npeople_cured <- npeople_death <- 0
nbed_need <- 0

########## 画出初始数据 ##########
# 设置画图参数
person_color <- data.frame(   # 不同健康状态的颜色不同
  label = c("健康", "潜伏", "确诊", "隔离", "治愈", "死亡"),
  state = c(STATE_NORMAL, STATE_SHADOW, STATE_CONFIRMED, STATE_FREEZE, 
            STATE_CURED, STATE_DEATH),
  color = c(
    "lightgreen",   # 健康
    "#EEEE00",      # 潜伏期
    "red",          # 确诊
    "#FFC0CB",      # 隔离
    "green",        # 治愈
    "black"         # 死亡
  ), stringsAsFactors = F
)
bed_color <- data.frame(
  is_empty = c(T, F), color = c("#F8F8FF", "#FFC0CB"), stringsAsFactors = F
)
x11(width = 5, height = 7, xpos = 0, ypos = 0, title = "人群变化模拟")
window_hist <- dev.cur()
x11(width = 7, height = 7, xpos = 460, ypos = 0, title = "疫情传播模拟")
window_scatter <- dev.cur()
max_plot_x <- ifelse(BED_COUNT > 0, max(hosp_beds$x), CITY_WIDTH) + 10

# 疫情传播模拟散点图
dev.set(window_scatter)
plot(x = people$x, y = people$y, cex = .8, pch = 20, xlab = NA, ylab = NA,
     xlim = c(5, max_plot_x), xaxt = "n", yaxt = "n", bty = "n", main = "疫情传播模拟", 
     sub = paste0("世界时间第 ", getday(worldtime), " 天"),
     col = (people %>% left_join(person_color, by = "state") %>%
            select(color))$color)
points(x = hosp_beds$x, y = hosp_beds$y, cex = .8, pch = 20,
       col = (hosp_beds %>% left_join(bed_color, by = "is_empty") %>%
            select(color))$color)
rect(HOSPITAL_X - BED_ROW_SPACE / 2, HOSPITAL_Y + 10 - BED_COLUMN_SPACE, 
     max(hosp_beds$x) + BED_ROW_SPACE / 2, max(hosp_beds$y + BED_COLUMN_SPACE))
legend(x = 150, y = -30, legend = person_color$label, col = person_color$color,
       pch = 20, horiz = T, bty = "n", xpd = T)

# 人群变化模拟条形图
dev.set(window_hist)
bp_data <- c(npeople_death, npeople_cured, nbed_need, npeople_freeze, 
             npeople_confirmed, npeople_shadow)
bp_color <- c("black", "green", "#FFE4E1", "#FFC0CB", "red", "#EEEE00")
bp_labels <- c("死亡", "治愈", "不足\n床位", "隔离", "累计\n确诊", "潜伏")
bp <- barplot(bp_data, horiz = T, border = NA, col = bp_color, 
              xlim = c(0, CITY_PERSON_SIZE * 1), main = "人群变化模拟", 
              sub = paste0("世界时间第 ", getday(worldtime), " 天"))
abline(v = BED_COUNT, col = "gray", lty = 3)
abline(v = CITY_PERSON_SIZE, col = "gray", lty = 1)
text(x = -350, y = bp, labels = bp_labels, xpd = T)
text(x = bp_data + CITY_PERSON_SIZE / 15, y = bp, xpd = T,
     labels = ifelse(bp_data > 0, bp_data, ""))
legend(x = 300, y = -.6, legend = c("总床位数", "城市总人口"), col = "gray",
       lty = c(3, 1), bty = "n", horiz = T, xpd = T)

Sys.sleep(5)  # 手动调整窗口大小

########## 更新人群数据 ##########
# 市民流动意愿以及移动位置参数
MOVE_WISH_SIGMA <- 1
MOVE_DIST_SIGMA <- 50
SAFE_DIST <- 2   # 安全距离

worldtime <- worldtime + 1
get_min_dist <- function(person, peop) {  # 一个人和一群人之间的最小距离
  min(sqrt((person["x"] - peop$x) ^ 2 + (person["y"] - peop$y) ^ 2))
}
for (i in 1:MAX_TRY) {
  # 如果已经隔离或者死亡了,就不需要处理了
  #
  # 处理已经确诊的感染者(即患者)
  peop_id <- people$id[people$state == STATE_CONFIRMED & 
                                 people$die_moment == 0]
  if ((npeop <- length(peop_id)) > 0) {
    people$die_moment[peop_id] <- ifelse(
      runif(npeop, 0, 1) < FATALITY_RATE,     # 用均匀分布模拟确诊患者是否会死亡
      people$confirmed_time + max(rnorm(npeop, DIE_TIME, DIE_SIGMA), 0),  # 发病后确定死亡时刻
      -1                                      # 逃过了死神的魔爪
    )
  }
  # 如果患者已经确诊,且(世界时刻-确诊时刻)大于医院响应时间,
  # 即医院准备好病床了,可以抬走了
  peop_id <- people$id[people$state == STATE_CONFIRMED & 
                  worldtime - people$confirmed_time >= HOSPITAL_RECEIVE_TIME]
  if ((npeop <- length(peop_id)) > 0) {
    if ((nbed_empty <- sum(hosp_beds$is_empty)) > 0) {  # 有空余床位
      nbed_use <- min(npeop, nbed_empty)
      bed_id <- hosp_beds$id[hosp_beds$is_empty][1:nbed_use]
      # 更新患者信息
      peop_id2 <- sample(peop_id, nbed_use)   # 这里是随机选择,理论上应该按症状轻重
      people$x[peop_id2] <- hosp_beds$x[bed_id]
      people$y[peop_id2] <- hosp_beds$y[bed_id]
      people$state[peop_id2] <- STATE_FREEZE
      people$freeze_time[peop_id2] <- worldtime
      # 更新床位信息
      hosp_beds$is_empty[bed_id] <- F
      hosp_beds$person_id[bed_id] <- peop_id2
    } 
  }
  # TODO 需要确定一个变量用于治愈时长。
  # 为了说明问题,暂时用一个正态分布模拟治愈时长并且假定治愈的人不会再被感染
  peop_id <- people$id[people$state == STATE_FREEZE & 
                         people$cured_moment == 0]
  if ((npeop <- length(peop_id)) > 0) { # 正态分布模拟治愈时间
    people$cured_moment[peop_id] <- people$freeze_time[peop_id] + 
      max(rnorm(npeop, CURED_TIME, CURED_SIGMA), 0)
  }
  peop_id <- people$id[people$state == STATE_FREEZE & people$cured_moment > 0 &
                         worldtime >= people$cured_moment]
  if ((npeop <- length(peop_id)) > 0) {  # 归还床位
    people$state[peop_id] <- STATE_CURED
    hosp_beds$is_empty[! hosp_beds$is_empty & hosp_beds$person_id %in% peop_id] <- T
    people$x[peop_id] <- sapply(rnorm(npeop, CITY_CENTERX, PERSON_DIST_X_SIGMA), 
             format_coord, boundary = CITY_WIDTH)    # (x, y) 为人群点坐标
    people$y[peop_id] <- sapply(rnorm(npeop, CITY_CENTERY, PERSON_DIST_Y_SIGMA), 
             format_coord, boundary = CITY_HEIGHT)
    people$tx[peop_id] <- rnorm(npeop, people$x[peop_id], PERSON_DIST_X_SIGMA)
    people$ty[peop_id] <- rnorm(npeop, people$y[peop_id], PERSON_DIST_Y_SIGMA)
    people$has_target[peop_id] <- T
    people$is_arrived[peop_id] <- F
  }
  # 处理病死者
  peop_id <- people$id[people$state %in% c(STATE_CONFIRMED, STATE_FREEZE) & 
      worldtime >= people$die_moment & people$die_moment > 0]
  if (length(peop_id) > 0) {  # 归还床位
    people$state[peop_id] <- STATE_DEATH
    hosp_beds$is_empty[! hosp_beds$is_empty & hosp_beds$person_id %in% peop_id] <- T
  }
  # 处理发病的潜伏期感染者
  peop_id <- people$id[people$state == STATE_SHADOW & 
                      worldtime >= people$confirmed_time]
  if ((npeop <- length(peop_id)) > 0) {
    people$state[peop_id] <- STATE_CONFIRMED   # 潜伏者发病
  }
  # 处理未隔离者的移动问题
  peop_id <- people$id[
    ! people$state %in% c(STATE_FREEZE, STATE_DEATH) & 
    rnorm(CITY_PERSON_SIZE, MOVE_WISH_MU, MOVE_WISH_SIGMA) > 0] # 流动意愿
  if ((npeop <- length(peop_id)) > 0) {  # 正态分布模拟要移动到的目标点
    pp_id <- peop_id[! people$has_target[peop_id] | people$is_arrived[peop_id]]
    if ((npp <- length(pp_id)) > 0) {
      people$tx[pp_id] <- rnorm(npp, people$tx[pp_id], PERSON_DIST_X_SIGMA)
      people$ty[pp_id] <- rnorm(npp, people$ty[pp_id], PERSON_DIST_Y_SIGMA)
      people$has_target[pp_id] <- T
      people$is_arrived[pp_id] <- F
    }
    # 计算运动位移
    dx <- people$tx[peop_id] - people$x[peop_id]
    dy <- people$ty[peop_id] - people$y[peop_id]
    move_dist <- sqrt(dx ^ 2 + dy ^ 2)
    people$is_arrived[peop_id][move_dist < 1] <- T  # 判断是否到达目标点
    pp_id <- peop_id[move_dist >= 1]
    if ((npp <- length(pp_id)) > 0) {
      udx <- sign(dx[move_dist >= 1])  # x轴运动方向
      udy <- sign(dy[move_dist >= 1])
      # 是否到了边界
      pid_x <- (1:npp)[people$x[pp_id] + udx < 0 | people$x[pp_id] + udx > CITY_WIDTH]
      pid_y <- (1:npp)[people$y[pp_id] + udy < 0 | people$y[pp_id] + udy > CITY_HEIGHT]
      # 更新到了边界的点的信息
      people$x[pp_id[pid_x]] <- people$x[pp_id[pid_x]] - udx[pid_x]
      people$y[pp_id[pid_y]] <- people$y[pp_id[pid_y]] - udy[pid_y]
      people$has_target[unique(c(pp_id[pid_x], pp_id[pid_y]))] <- F
      # 更新没有到边界的点的信息
      people$x[pp_id[! pp_id %in% pid_x]] <- people$x[pp_id[! pp_id %in% pid_x]] + 
        udx[! pp_id %in% pid_x]
      people$y[pp_id[! pp_id %in% pid_y]] <- people$y[pp_id[! pp_id %in% pid_y]] + 
        udy[! pp_id %in% pid_y]
    }
  }
  # 处理健康人被感染的问题
  # 通过一个随机幸运值和安全距离决定感染其他人
  normal_peop_id <- people$id[people$state == STATE_NORMAL]
  other_peop_id <- people$id[! people$state %in% c(STATE_NORMAL, STATE_CURED)]
  if (length(normal_peop_id) > 0) {
    normal_other_dist <- apply(people[normal_peop_id, ], 1, get_min_dist,
                             peop = people[other_peop_id, ])
    normal2other_id <- normal_peop_id[normal_other_dist < SAFE_DIST &
                        runif(length(normal_peop_id), 0, 1) < BROAD_RATE]
    if ((n2other <- length(normal2other_id)) > 0) {
      people$state[normal2other_id] <- STATE_SHADOW
      people$infected_time[normal2other_id] <- worldtime
      people$confirmed_time[normal2other_id] <- worldtime + 
        max(rnorm(n2other, SHADOW_TIME / 2, SHADOW_TIME_SIGMA), 0)
    }
  }

  # 画出更新后的数据
  npeople_confirmed <- sum(people$state >= STATE_CONFIRMED)
  npeople_death <- sum(people$state == STATE_DEATH)
  npeople_freeze <- sum(people$state == STATE_FREEZE)
  npeople_shadow <- sum(people$state == STATE_SHADOW)
  npeople_cured <- sum(people$state == STATE_CURED)
  nbed_need <- npeople_confirmed - npeople_cured - npeople_death - BED_COUNT
  nbed_need <- ifelse(nbed_need > 0, nbed_need, 0)  # 不足病床数
  # 疫情传播模拟散点图
  dev.set(window_scatter)
  plot(x = people$x, y = people$y, cex = .8, pch = 20, xlab = NA, ylab = NA,
       xlim = c(5, max_plot_x), xaxt = "n", yaxt = "n", bty = "n", main = "疫情传播模拟", 
       sub = paste0("世界时间第 ", getday(worldtime), " 天"),
       col = (people %>% left_join(person_color, by = "state") %>%
              select(color))$color)
  points(x = hosp_beds$x, y = hosp_beds$y, cex = .8, pch = 20,
         col = (hosp_beds %>% left_join(bed_color, by = "is_empty") %>%
                select(color))$color)
  rect(HOSPITAL_X - BED_ROW_SPACE / 2, HOSPITAL_Y + 10 - BED_COLUMN_SPACE, 
       max(hosp_beds$x) + BED_ROW_SPACE / 2, max(hosp_beds$y + BED_COLUMN_SPACE))
  legend(x = 150, y = -30, legend = person_color$label, col = person_color$color,
         pch = 20, horiz = T, bty = "n", xpd = T)
  # 人群变化模拟条形图
  dev.set(window_hist)
  bp_data <- c(npeople_death, npeople_cured, nbed_need, npeople_freeze, 
               npeople_confirmed, npeople_shadow)
  bp <- barplot(bp_data, horiz = T, border = NA, col = bp_color, 
                xlim = c(0, CITY_PERSON_SIZE * 1), main = "人群变化模拟", 
                sub = paste0("世界时间第 ", getday(worldtime), " 天"))
  abline(v = BED_COUNT, col = "gray", lty = 3)
  abline(v = CITY_PERSON_SIZE, col = "gray", lty = 1)
  text(x = -350, y = bp, labels = bp_labels, xpd = T)
  text(x = bp_data + CITY_PERSON_SIZE / 15, y = bp, xpd = T,
       labels = ifelse(bp_data > 0, bp_data, ""))
  legend(x = 300, y = -.6, legend = c("总床位数", "城市总人口"), col = "gray",
         lty = c(3, 1), bty = "n", horiz = T, xpd = T)

  # 更新世界时间
  worldtime <- worldtime + 1
}
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-02-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信了 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 效果展示
  • 小结
    • 参考
    • 附录:RVirusBroadcast代码
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档