前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【文本信息抽取与结构化】深入了解关系抽取你需要知道的东西

【文本信息抽取与结构化】深入了解关系抽取你需要知道的东西

作者头像
用户1508658
发布2020-02-27 12:07:08
1.3K0
发布2020-02-27 12:07:08
举报
文章被收录于专栏:有三AI有三AI有三AI

常常在想,自然语言处理到底在做的是一件什么样的事情?到目前为止,我所接触到的NLP其实都是在做一件事情,即将自然语言转化为一种计算机能够理解的形式。这一点在知识图谱、信息抽取、文本摘要这些任务中格外明显。不同的任务的差异在于目标的转化形式不一样,因而不同的任务难度、处理方式存在差异。

这个系列文章【文本信息抽取与结构化】,在自然语言处理中是非常有用和有难度的技术,是文本处理与知识提取不可或缺的技术。

本篇介绍如何从文本中抽取出两个或者多个实体之间的关系,即关系抽取。

作者&编辑 | 小Dream哥

关系抽取概述

在前面的文章中,我们介绍了将文本结构化的大致过程以及信息抽取的、涉及到的技术,却没有介绍具体的技术细节。接下来我们来全面而细致的介绍相应的技术,今天我们关注关系抽取。

所谓关系抽取,就是抽取文本中两个或者多个实体之间的关系。例如:

中国的首都是北京

关系抽取即是从上述文本中,抽取出如下的实体关系的任务:

<中国,首都,北京>

关系抽取的方法大概有以下几类:

1.基于模板的方法

基于规则

基于依存句法

2.监督学习

机器学习

深度学习(pipline vs joint model)

3.半监督/无监督学习

Bootstrapping

Distant supervision

Unsupervised learning from web

下面我们一一来介绍这些方法。

基于模板的方法

1)基于自定义规则

通常来说,在语义上,表达两种实体的关系都有一些特定的说法,例如刚才的例子,描述国家和首都通常都会有这样的模式:

<国家>的首都/首付是<首都>

因此,基于自定义规则的方法,可以总结某类关系常用的说法,然后基于这些说法提炼出规则/正则表达式来进行关系抽取。

2)基于NER标签

很多时候,特定的关系是在某些特定的实体之间,例如:

1.首都(国家,城市)

2.创作(歌手,歌曲)

3.写作(作家,小说)

结合NER标签与具体的规则,常常能够取得不错的关系抽取效果。

此外,基于句法关系等模板的方法,这里不再详述。基于规则的方法有如下的优缺点:

优点:

1.准确率高

2.可以为特定领域定制

3.启动快,可以在小规模数据集上实现

缺点:

1.召回率低

2.特定领域的规则通常需要专家构建

3.难以维护

4.可移植性差

2 监督学习方法

1)传统机器学习

传统机器学习进行关系提取通常基于一些分类模型,包括朴素贝叶斯,SVM等。为了提高效率,通常会训练两个分类器,第一个分类器是1/0分类,判断命名实体间是否有关系;第二个分类器是多分类器,第一个分类器判断有关系再输入到这个分类器,预测关系的类别。这样做能够先排除大多数的实体对,进而加快分类器的训练过程。

基于传统机器学习方法的标准流程是:

1.预先定义好想提取的关系集合

2.定义或选择相关的命名实体集合

3.寻找并标注数据

4.选择有代表性的语料库

5.命名实体标记

6.实体间的关系标注

7.分词训练、测试、验证集

8.涉及特征

9.选择并训练分类器

10.评估结果

目前,用于关系抽取最多也是最有效的监督学习是深度学习的方法,所以这里就不多介绍机器学习相关的算法,我们来着重介绍深度学习的算法。

2)深度学习的方法

基于深度学习的关系抽取目前主要有两种方法:Pipline Method和Joint Method。

Pipline Method,流水线方法:输入一个句子,首先进行命名实体识别,然后对识别出来的实体进行两两组合,再进行关系分类。

流水线的方法存在蛮大的缺点,例如:

1.错误传播,实体识别模块的错误会传播到后面的分类模块;

2.忽略了两个子任务之间存在的关系。例如前面“中国的首都是北京”的例子,如果存在“首都”关系,那么前一个实体必然是国家类别,后一个实体比如是城市类别。流水线的方法,忽略了这些信息;

3.产生了没必要的冗余信息,由于需要对识别出来的实体进行两两配对,然后再进行关系分类;那些没有关系的实体对就会产生多余的信息,提高错误率。

Joint Method,即联合抽取方法,则跟流水线的方法不同,基于流水线方法的诸多缺陷,Joint Method能够通过一个实体识别和关系分类的联合模型,直接得到有关系的实体三元组。

Joint Method主要分为两个流派,基于参数共享(Parameter Sharing)和基于标注策略(Tagging Policy)两类。

基于基于参数共享(Parameter Sharing)的联合抽取方法,可参考这一篇论文:

Suncong, Zheng, Yuexing, et al. Joint entity and relation extraction based on a hybrid neural network[J]. Neurocomputing, 2017.

如上图所示,是这种方法的网络结构框图。每个词都会被映射到一个实体标记(BILOS:Begin Inside Last Outside Single),它包含了改字在实体中的位置信息。NER模块没有用CRF,而是额外用了一层LSTM来解码双向LSTM编码出来的Hidden state,并建模它和实体标记之间的关系。该模块的损失函数如下:

关系分类模块采用CNN模型,处理BiLSTM的Hidden state并输出关系类别。该模块的损失函数如下:

基于标注策略(Tagging Policy)的联合抽取方法,可参考这一篇论文:

S. Zheng, F. Wang, H. Bao, Y. Hao, P. Zhou, B. Xu, Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme, Acl. (2017).

在这篇论文中,将实体识别和关系分类两个问题,转化为一个序列标注的问题,然后通过一个端对端的神经网络模型直接得到关系实体三元组。

他们提出的这种新的标注策略主要由下图中三部分组成:

1)实体中词的位置信息{B(实体开始),I(实体内部),E(实体结尾),S(单个实体)};

2)关系类型信息{根据预先定义的关系类型进行编码};

3)实体角色信息{1(实体1),2(实体2)}。注意,这里只要不是实体关系三元组内的词全部标签都为"O"。

如上图所示,“B-CP-1"表示这个词是一个实体的begin,同时这个实体属于关系CP的第一个实体。

与典型的用LSTM进行实体抽取的模型差异在于,这个模型对损失做了一定的修改,如下图所示:

当标签为"O"时,就是正常的目标函数,当标签不是"O"时,即涉及到了关系实体标签,则通过α来增大标签的影响。实验结果表明,这个带偏置的目标函数能够更准确的预测实体关系对。

关于关系抽取的基本方法,到这里就介绍的差不多,希望读者能有所收获,下篇我们继续介绍最新的关系抽取模型。

总结

文本信息抽取与结构化是目前NLP中最为实际且效益最大的任务,熟悉这个任务是一个NLP算法工程师必需要做的事情。

读者们可以留言,或者加入我们的NLP群进行讨论。感兴趣的同学可以微信搜索jen104,备注"加入有三AI NLP群"

下期预告:最新的关系抽取模型介绍

知识星球推荐

扫描上面的二维码,就可以加入我们的星球,助你成长为一名合格的自然语言处理算法工程师。

知识星球主要有以下内容:

(1) 聊天机器人;

(2) 知识图谱;

(3) NLP预训练模型。

转载文章请后台联系

侵权必究

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-02-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 有三AI 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档