前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >大数据基石——Hadoop与MapReduce

大数据基石——Hadoop与MapReduce

作者头像
TechFlow-承志
发布2020-03-05 15:08:15
4060
发布2020-03-05 15:08:15
举报
文章被收录于专栏:TechFlowTechFlow

点击上方蓝字,和我一起学技术。

近两年AI成了最火热领域的代名词,各大高校纷纷推出了人工智能专业。但其实,人工智能也好,还是前两年的深度学习或者是机器学习也罢,都离不开底层的数据支持。对于动辄数以TB记级别的数据,显然常规的数据库是满足不了要求的。今天,我们就来看看大数据时代的幕后英雄——Hadoop。

Hadoop这个关键词其实有两重含义,最早它其实指的就是单纯的分布式计算系统。但是随着时代的发展,Hadoop系统扩大,如今hadoop已经是成了一个完整的技术家族。从底层的分布式文件系统(HDFS)到顶层的数据解析运行工具(Hive、Pig),再到分布式系统协调服务(ZooKeeper)以及分布式数据库(HBase),都属于Hadoop家族,几乎涵盖了大半大数据的应用场景。在Spark没有流行之前,Hadoop一直是大数据应用中的绝对主流,即使是现在,依旧有大量的中小型公司,还是依靠Hadoop搭建大数据系统。

如今的Hadoop虽然家族庞大,但是早年Hadoop的结构非常简单,几乎只有两块,一块是分布式文件系统,这个是整个数据的支撑,另一个就是MapReduce算法。

分布式文件系统

大数据时代,数据的量级大规模增长,动辄以TB甚至PB计。对于这么海量的数据,如果我们还使用常规的方法是非常困难的。因为即使是 O(n) 的算法,将所有的数据遍历一遍,所消耗的时间也肯定是以小时计,这显然是不能接受的。不仅如此,像是MySQL这样的数据库对于数据规模也是有限制的,一旦数据规模巨大,超过了数据库的承载能力,那几乎是系统级的噩梦(重要的数据不能丢弃,但是现在的系统无法支撑)。

既然我们把数据全部存储在一起,会导致系统问题,那么我们可不可以把数据分成很多份分别存储,当我们需要处理这些数据的时候,我们对这些分成许多小份的数据分别处理,最后再合并在一起

答案当然是可行的,Hadoop的文件系统正是基于这个思路。

在HDFS当中,将数据分割成一个一个的小份。每个小份叫做一个存储块,每个存储块为64MB。这样一个巨大的文件会被打散存储在许多存储块当中。当我们需要操作这些数据的时候,Hadoop会同时起动许多个执行器(executor)来并发执行这些存储块。理论上来说,执行器的数量越多,执行的速度也就越快。只要我们有足够多的执行器,就可以在短时间内完成海量数据的计算工作。

但是有一个小问题,为什么每个存储块偏偏是64MB,而不是128MB或者256MB呢?

原因也很简单,因为数据存储在硬盘上,当我们查找数据的时候,CPU其实是不知道数据究竟存放在什么地方的。需要有一个专门的程序去查找数据的位置,这个过程被称为寻址。寻址的时候会伴随着硬盘的高速旋转。硬盘的旋转速度是有限的,自然我们查找文件的速度也会存在瓶颈。如果存储块太小,那么存储块的数量就会很多,我们寻址的时间就会变长。

如果存储块设置得大一些行不行?也不行,因为我们在执行的时候,需要把存储块的数据拷贝到执行器的内存里执行。这个拷贝伴随着读写和网络传输的操作,传输数据同样耗时不少。存储块过大,会导致读写的时间过长,同样不利于系统的性能。根据业内的说法,希望寻址的耗时占传输时间的1%,目前的网络带宽最多可以做到100MB/s,根据计算,每个存储块大约在100MB左右最佳。也许是程序员为了凑整,所以选了64MB这个大小。

目前为止,我们已经搞清楚了Hadoop内部的数据存储的原理。那么,Hadoop又是怎么并发计算的呢?这就下一个关键词——MapReduce出场了。

MapReduce

严格说起来MapReduce并不是一种算法, 而是一个计算思想。它由map和reduce两个阶段组成。

先说map,MapReduce中的map和Java或者是C++以及一些其他语言的map容器不同,它表示的意思是映射。负责执行map操作的机器(称作mapper)从HDFS当中拿到数据之后,会对这些数据进行处理,从其中提取出我们需要用到的字段或者数据,将它组织成key->value的结构,进行返回。

为什么要返回key->value的结构呢?直接返回我们要用到的value不行吗?

不行,因为在map和reduce中间,Hadoop会根据key值进行排序,将key值相同的数据归并到一起之后,再发送给reducer执行。也就是说,key值相同的数据会被同一个reducer也就是同一台机器处理,并且key相同的数据连续排列。reducer做的是通过mapper拿到的数据,生成我们最终需要的结果。

Sample

这个过程应该不难理解, 但是初学者可能面临困惑,为什么一开始的时候,要处理成key-value结构的呢?为什么又要将key值相同的数据放入一个reducer当中呢,这么做有什么意义?

这里,我们举一个例子,就清楚了。

MapReduce有一个经典的问题,叫做wordCount,顾名思义就是给定一堆文本,最后计算出文本当中每个单词分别出现的次数。Map阶段很简单,我们遍历文本当中的单词,每遇到一个单词,就输出单词和数字1。写成代码非常简单:

代码语言:javascript
复制
def map(text):
  for line in text:
    words = line.split(' ')
    for w in words:
      print(w, 1)

这样当然还是不够的,我们还需要把相同的单词聚合起来,清点一下看看究竟出现了多少次,这个时候就需要用到reducer了。reducer也很简单,我们读入的是map输出的结果。由于key相同的数据都会进入同一个reducer当中,所以我们不需要担心遗漏,只需要直接统计就行:

代码语言:javascript
复制
def reduce(text):
  wordNow = None
  totCount = 0
  for line in text:
    elements = line.split(' ')
    word, count = elements[0], int(elements[1])
    # 碰到不同的key,则输出之前的单词以及数量
    if word != wordNow:
        if wordNow is not None:
          print(wordNow, totCount)
        wordNow = word
        totCount = 1
    # 否则,更新totCount
    else:
      totCount += count

如果我们map的结果不是key-value结构,那么Hadoop就没办法根据key进行排序,并将key相同的数据归并在一起。那么我们在reduce的时候,同一个单词就可能出现在不同的reducer当中,这样的结果显然是不正确的。

当然,如果我们只做一些简单的操作,也可以舍弃reduce阶段,只保留map产出的结果。

现在看MapReduce的思想其实并不复杂,但是当年大数据还未兴起的时候,MapReduce横空出世,既提升了计算性能,又保证了结果的准确。一举解决了大规模数据并行计算的问题,回想起来,应该非常惊艳。虽然如今技术更新,尤其是Spark的流行,抢走了Hadoop许多荣光。但MapReduce的思想依旧在许多领域广泛使用,比如Python就支持类似的MapReduce操作,允许用户自定义map和reduce函数,对数据进行并行处理。

不过,MapReduce也有短板,比如像是数据库表join的操作通过MapReduce就很难实现。而且相比于后来的Hive以及Spark SQL来说,MapReduce的编码复杂度还是要大一些。但不管怎么说,瑕不掩瑜,对于初学者而言,它依旧非常值得我们深入了解。

如果你喜欢本文,请点击下方“在看”,或者顺手转发吧~

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-12-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Coder梁 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
数据库
云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档