前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >OpenCV图像处理专栏十八 | 手动构造Sobel算子完成边缘检测

OpenCV图像处理专栏十八 | 手动构造Sobel算子完成边缘检测

作者头像
BBuf
发布2020-03-19 17:36:33
1.1K0
发布2020-03-19 17:36:33
举报
文章被收录于专栏:GiantPandaCV

1. 前言

众所周知,在传统的图像边缘检测算法中,最常用的一种算法是利用Sobel算子完成的。Sobel算子一共有个,一个是检测水平边缘的算子,另一个是检测垂直边缘的算子。

2. Sobel算子优缺点

Sobel算子的优点是可以利用快速卷积函数,简单有效,且对领域像素位置的影响做了加权,可以降低边缘模糊程度,有较好效果。然而Sobel算子并没有基于图像的灰度信息进行处理,所以在提取图像边缘信息的时候可能不会让人视觉满意。

3. 手动构造Sobel算子

我们来看一下怎么构造Sobel算子?

Sobel算子是在一个坐标轴的方向进行非归一化的高斯平滑,在另外一个坐标轴方向做一个差分,大小的Sobel算子是由平滑算子差分算子全卷积得到,其中代表Sobel算子的半径,必须为奇数。

对于窗口大小为的非归一化Sobel平滑算子等于阶的二项式展开式的系数,而Sobel平滑算子等于阶的二项式展开式的系数两侧补,然后向前差分。

举个例子:构造一个阶的Sobel非归一化的Sobel平滑算子和Sobel差分算子

Sobel平滑算子:取二项式的阶数为,然后计算展开式系数为, 也即是,这就是阶的非归一化的Sobel平滑算子。

Sobel差分算子:取二项式的阶数为,然后计算二项展开式的系数,即为:,两侧补 并且前向差分得到,第项差分后可以直接删除。

Sobel算子将阶的Sobel平滑算子和Sobel差分算子进行全卷积,即可得到的Sobel算子。

其中方向的Sobel算子为:

而方向的Sobel算子为:

4. 代码实现

代码语言:javascript
复制
const int fac[9]={1, 1, 2, 6, 24, 120, 720, 5040, 40320};
//Sobel平滑算子
Mat getSmmoothKernel(int ksize){
    Mat Smooth = Mat::zeros(Size(ksize, 1), CV_32FC1);
    for(int i = 0; i < ksize; i++){
        Smooth.at<float>(0, i) = float(fac[ksize-1]/(fac[i] * fac[ksize-1-i]));
    }
    return Smooth;
}
//Sobel差分算子
Mat getDiffKernel(int ksize){
    Mat Diff = Mat::zeros(Size(ksize, 1), CV_32FC1);
    Mat preDiff = getSmmoothKernel(ksize-1);
    for(int i = 0; i < ksize; i++){
        if(i == 0){
            Diff.at<float>(0, i) = 1;
        }else if(i == ksize-1){
            Diff.at<float>(0, i) = -1;
        }else{
            Diff.at<float>(0, i) = preDiff.at<float>(0, i) - preDiff.at<float>(0, i-1);
        }
    }
    return Diff;
}
//调用filter2D实现卷积
void conv2D(InputArray src, InputArray kernel, OutputArray dst, int dep, Point anchor=Point(-1,-1), int borderType=BORDER_DEFAULT){
    Mat kernelFlip;
    flip(kernel, kernelFlip, -1);
    filter2D(src, dst, dep, kernelFlip, anchor, 0.0, borderType);
}
//先进行垂直方向的卷积,再进行水平方向的卷积
void sepConv2D_Y_X(InputArray src, OutputArray dst, int dep, InputArray kernelY, InputArray kernelX, Point anchor=Point(-1,-1), int borderType=BORDER_DEFAULT){
    Mat Y;
    conv2D(src, kernelY, Y, dep, anchor, borderType);
    conv2D(Y, kernelX, dst, dep, anchor, borderType);
}
//先进行水平方向的卷积,再进行垂直方向的卷积
void sepConv2D_X_Y(InputArray src, OutputArray dst, int dep, InputArray kernelX, InputArray kernelY, Point anchor=Point(-1,-1), int borderType=BORDER_DEFAULT){
    Mat X;
    conv2D(src, kernelX, X, dep, anchor, borderType);
    conv2D(X, kernelY, dst, dep, anchor, borderType);
}
//Sobel算子提取边缘信息
Mat Sobel(Mat &src, int x_flag, int y_flag, int kSize, int borderType){
    Mat Smooth = getSmmoothKernel(kSize);
    Mat Diff = getDiffKernel(kSize);
    Mat dst;
    if(x_flag){
        sepConv2D_Y_X(src, dst, CV_32FC1, Smooth.t(), Diff, Point(-1, -1), borderType);
    }else if(x_flag == 0 && y_flag){
        sepConv2D_X_Y(src, dst, CV_32FC1, Smooth, Diff.t(), Point(-1, -1), borderType);
    }
    return dst;
}
int main(){
    Mat src = imread("../lena.jpg");
    Mat gray;
    cvtColor(src, gray, CV_BGR2GRAY);
    Mat dst1 = Sobel(gray, 1, 0, 3, BORDER_DEFAULT);
    Mat dst2 = Sobel(gray, 0, 1, 3, BORDER_DEFAULT);
    //转8位灰度图显示
    convertScaleAbs(dst1, dst1);
    convertScaleAbs(dst2, dst2);
    imshow("origin", gray);
    imshow("result-X", dst1);
    imshow("result-Y", dst2);
    imwrite("../result.jpg", dst1);
    imwrite("../result2.jpg", dst2);
    waitKey(0);
    return 0;
}

5. 效果

经典人物Lena

先进行Y方向的Sobel运算,然后再进行X方向的结果

先进行X方向的Sobel运算,然后再进行Y方向的结果

虞姬原图

先进行Y方向的Sobel运算,然后再进行X方向的结果

先进行X方向的Sobel运算,然后再进行Y方向的结果

可以看到两种不同的操作顺序会获得不完全一样的边缘检测效果。

6. 结论

这篇文章介绍了边缘检测是如何手动构造的,只要熟记二项式展开的系数,以此为出发点就比较好分析了。后面的源码实现也是比较朴素的实现,如果你想加速那么重心可以放在filter2D也即是卷积操作上,以后会来分享的。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-03-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 GiantPandaCV 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 前言
  • 2. Sobel算子优缺点
  • 3. 手动构造Sobel算子
  • 4. 代码实现
  • 5. 效果
  • 6. 结论
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档