前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >PyTorch实现Word2Vec

PyTorch实现Word2Vec

作者头像
mathor
发布2020-04-14 15:47:23
4.4K1
发布2020-04-14 15:47:23
举报
文章被收录于专栏:mathor

本文主要是使用PyTorch复现word2vec论文

PyTorch中的nn.Embedding

实现关键是nn.Embedding()这个API,首先看一下它的参数说明

其中两个必选参数num_embeddings表示单词的总数目,embedding_dim表示每个单词需要用什么维度的向量表示。而nn.Embedding权重的维度也是(num_embeddings, embedding_dim),默认是随机初始化的

代码语言:javascript
复制
import torch
import torch.nn as nn

embeds = nn.Embedding(2, 5)
embeds.weight
# 输出:
Parameter containing:
tensor([[-1.1454,  0.3675, -0.3718,  0.3733,  0.5979],
        [-0.7952, -0.9794,  0.6292, -0.3633, -0.2037]], requires_grad=True)

如果使用与训练好的词向量,则采用

代码语言:javascript
复制
pretrained_weight = np.array(pretrained_weight)
embeds.weight.data.copy_(torch.from_numpy(pretrained_weight))

想要查看某个词的词向量,需要传入这个词在词典中的index,并且这个index得是LongTensor型的

代码语言:javascript
复制
embeds = nn.Embedding(100, 10)
embeds(torch.LongTensor([50]))
# 输出
tensor([[-1.9562e-03,  1.8971e+00,  7.0230e-01, -6.3762e-01, -1.9426e-01,
          3.4200e-01, -2.0908e+00, -3.0827e-01,  9.6250e-01, -7.2700e-01]],
       grad_fn=<EmbeddingBackward>)

过程详解

具体的word2vec理论可以在我的这篇博客看到,这里就不多赘述

下面说一下实现部分的细节

首先Embedding层输入的shape是(batchsize, seq_len),输出的shape是(batchsize, embedding_dim)

上图的流程是把文章中的单词使用词向量来表示

  1. 提取文章所有的单词,把所有的单词按照频次降序排序(取前4999个,表示常出现的单词。其余所有单词均用'<UNK>'表示。所以一共有5000个单词)
  2. 500个单词使用one-hot编码
  3. 通过训练会生成一个$5000\times 300$的矩阵,每一行向量表示一个词的词向量。这里的300是人为指定,想要每个词最终编码为词向量的维度,你也可以设置成别的

这个矩阵如何获得呢?在Skip-gram模型中,首先会随机初始化这个矩阵,然后通过一层神经网络来训练。最终这个一层神经网络的所有权重,就是要求的词向量的矩阵

从上面的图中看到,我们所学习的embedding层是一个训练任务的一小部分,根据任务目标反向传播,学习到embedding层里的权重weight。这个weight是类似一种字典的存在,他能根据你输入的one-hot向量查到相应的Embedding vector

Pytorch实现

导包
代码语言:javascript
复制
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as tud

from collections import Counter
import numpy as np
import random
import math

import pandas as pd
import scipy
import sklearn
from sklearn.metrics.pairwise import cosine_similarity

random.seed(1)
np.random.seed(1)
torch.manual_seed(1)

C = 3 # context window
K = 15 # number of negative samples
epochs = 2
MAX_VOCAB_SIZE = 10000
EMBEDDING_SIZE = 100
batch_size = 32
lr = 0.2

上面的代码我想应该没有不明白的,C就是论文中选取左右多少个单词作为背景词。这里我使用的是负采样来近似训练,K=15表示随机选取15个噪声词。MAX_VOCAB_SIZE=10000表示这次实验我准备训练10000个词的词向量,但实际上我只会选出语料库中出现次数最多的9999个词,还有一个词是<UNK>用来表示所有的其它词。每个词的词向量维度为EMBEDDING_SIZE

语料库下载地址:https://pan.baidu.com/s/10Bd3JxCCFTjBPNt0YROvZA 提取码:81fo

文件中的内容是英文文本,去除了标点符号,每个单词之间用空格隔开

读取文本数据并处理
代码语言:javascript
复制
with open('text8.train.txt') as f:
    text = f.read() # 得到文本内容

text = text.lower().split() # 分割成单词列表
vocab_dict = dict(Counter(text).most_common(MAX_VOCAB_SIZE - 1)) # 得到单词字典表,key是单词,value是次数
vocab_dict['<UNK>'] = len(text) - np.sum(list(vocab_dict.values())) # 把不常用的单词都编码为"<UNK>"
idx2word = [word for word in vocab_dict.keys()]
word2idx = {word:i for i, word in enumerate(idx2word)}
word_counts = np.array([count for count in vocab_dict.values()], dtype=np.float32)
word_freqs = word_counts / np.sum(word_counts)
word_freqs = word_freqs ** (3./4.)

最后一行代码,word_freqs存储了每个单词的频率,然后又将所有的频率变为原来的0.75次方,这是因为word2vec论文里面推荐这么做,当然你不改变这个值也没什么问题

实现DataLoader

接下来我们需要实现一个DataLoader,DataLoader可以帮助我们轻松打乱数据集,迭代的拿到一个mini-batch的数据等。一个DataLoader需要以下内容:

  1. 把所有word编码成数字
  2. 保存vocabulary,单词count、normalized word frequency
  3. 每个iteration sample一个中心词
  4. 根据当前的中心词返回context单词
  5. 根据中心词sample一些negative单词
  6. 返回单词的counts

为了使用DataLoader,我们需要定义以下两个function

  • __len__():返回整个数据集有多少item
  • __getitem__(idx):根据给定的idx返回一个item

这里有一个好的tutorial介绍如何使用PyTorch DataLoader

代码语言:javascript
复制
class WordEmbeddingDataset(tud.Dataset):
    def __init__(self, text, word2idx, idx2word, word_freqs, word_counts):
        ''' text: a list of words, all text from the training dataset
            word2idx: the dictionary from word to index
            idx2word: index to word mapping
            word_freqs: the frequency of each word
            word_counts: the word counts
        '''
        super(WordEmbeddingDataset, self).__init__() # #通过父类初始化模型,然后重写两个方法
        self.text_encoded = [word2idx.get(word, word2idx['<UNK>']) for word in text] # 把单词数字化表示。如果不在词典中,也表示为unk
        self.text_encoded = torch.LongTensor(self.text_encoded) # nn.Embedding需要传入LongTensor类型
        self.word2idx = word2idx
        self.idx2word = idx2word
        self.word_freqs = torch.Tensor(word_freqs)
        self.word_counts = torch.Tensor(word_counts)
        
        
    def __len__(self):
        return len(self.text_encoded) # 返回所有单词的总数,即item的总数
    
    def __getitem__(self, idx):
        ''' 这个function返回以下数据用于训练
            - 中心词
            - 这个单词附近的positive word
            - 随机采样的K个单词作为negative word
        '''
        center_words = self.text_encoded[idx] # 取得中心词
        pos_indices = list(range(idx - C, idx)) + list(range(idx + 1, idx + C + 1)) # 先取得中心左右各C个词的索引
        pos_indices = [i % len(self.text_encoded) for i in pos_indices] # 为了避免索引越界,所以进行取余处理
        pos_words = self.text_encoded[pos_indices] # tensor(list)
        
        neg_words = torch.multinomial(self.word_freqs, K * pos_words.shape[0], True)
        # torch.multinomial作用是对self.word_freqs做K * pos_words.shape[0]次取值,输出的是self.word_freqs对应的下标
        # 取样方式采用有放回的采样,并且self.word_freqs数值越大,取样概率越大
        # 每采样一个正确的单词(positive word),就采样K个错误的单词(negative word),pos_words.shape[0]是正确单词数量
        return center_words, pos_words, neg_words

每一行代码详细的注释都写在上面了,其中有一行代码需要特别说明一下,就是注释了tensor(list)的那一行,因为text_encoded本身是个tensor,而传入的pos_indices是一个list。下面举个例子就很好理解这句代码的作用了

代码语言:javascript
复制
a = torch.tensor([2, 3, 3, 8, 4, 6, 7, 8, 1, 3, 5, 0], dtype=torch.long)
b = [2, 3, 5, 6]
print(a[b])
# tensor([3, 8, 6, 7])

通过下面两行代码即可得到DataLoader

代码语言:javascript
复制
dataset = WordEmbeddingDataset(text, word2idx, idx2word, word_freqs, word_counts)
dataloader = tud.DataLoader(dataset, batch_size, shuffle=True)

可以随便打印一下看看

代码语言:javascript
复制
next(iter(dataset))
'''
(tensor(4813),
 tensor([  50, 9999,  393, 3139,   11,    5]),
 tensor([  82,    0, 2835,   23,  328,   20, 2580, 6768,   34, 1493,   90,    5,
          110,  464, 5760, 5368, 3899, 5249,  776,  883, 8522, 4093,    1, 4159,
         5272, 2860, 9999,    6, 4880, 8803, 2778, 7997, 6381,  264, 2560,   32,
         7681, 6713,  818, 1219, 1750, 8437, 1611,   12,   42,   24,   22,  448,
         9999,   75, 2424, 9970, 1365, 5320,  878,   40, 2585,  790,   19, 2607,
            1,   18, 3847, 2135,  174, 3446,  191, 3648, 9717, 3346, 4974,   53,
          915,   80,   78, 6408, 4737, 4147, 1925, 4718,  737, 1628, 6160,  894,
         9373,   32,  572, 3064,    6,  943]))
'''
定义PyTorch模型
代码语言:javascript
复制
class EmbeddingModel(nn.Module):
    def __init__(self, vocab_size, embed_size):
        super(EmbeddingModel, self).__init__()
        
        self.vocab_size = vocab_size
        self.embed_size = embed_size
        
        self.in_embed = nn.Embedding(self.vocab_size, self.embed_size)
        self.out_embed = nn.Embedding(self.vocab_size, self.embed_size)
        
    def forward(self, input_labels, pos_labels, neg_labels):
        ''' input_labels: center words, [batch_size]
            pos_labels: positive words, [batch_size, (window_size * 2)]
            neg_labels:negative words, [batch_size, (window_size * 2 * K)]
            
            return: loss, [batch_size]
        '''
        input_embedding = self.in_embed(input_labels) # [batch_size, embed_size]
        pos_embedding = self.in_embed(pos_labels)# [batch_size, (window * 2), embed_size]
        neg_embedding = self.in_embed(neg_labels) # [batch_size, (window * 2 * K), embed_size]
        
        input_embedding = input_embedding.unsqueeze(2) # [batch_size, embed_size, 1]
        
        pos_dot = torch.bmm(pos_embedding, input_embedding) # [batch_size, (window * 2), 1]
        pos_dot = pos_dot.squeeze(2) # [batch_size, (window * 2)]
        
        neg_dot = torch.bmm(neg_embedding, -input_embedding) # [batch_size, (window * 2 * K), 1]
        neg_dot = neg_dot.squeeze(2) # batch_size, (window * 2 * K)]
        
        log_pos = F.logsigmoid(pos_dot).sum(1) # .sum()结果只为一个数,.sum(1)结果是一维的张量
        log_neg = F.logsigmoid(neg_dot).sum(1)
        
        loss = log_pos + log_neg
        
        return -loss
    
    def input_embedding(self):
        return self.in_embed.weight.numpy()

bmm(a, b),batch matrix multiply。函数中的两个参数a,b都是维度为3的tensor,并且这两个tensor的第一个维度必须相同,后面两个维度必须满足矩阵乘法的要求

代码语言:javascript
复制
batch1 = torch.randn(10, 3, 4)
batch2 = torch.randn(10, 4, 5)
res = torch.bmm(batch1, batch2)
print(res.size())
# torch.Size([10, 3, 5])
训练模型
代码语言:javascript
复制
for e in range(1):
    for i, (input_labels, pos_labels, neg_labels) in enumerate(dataloader):
        input_labels = input_labels.long()
        pos_labels = pos_labels.long()
        neg_labels = neg_labels.long()

        optimizer.zero_grad()
        loss = model(input_labels, pos_labels, neg_labels).mean()
        loss.backward()

        optimizer.step()

        if i % 100 == 0:
            print('epoch', e, 'iteration', i, loss.item())

embedding_weights = model.input_embeddings()
torch.save(model.state_dict(), "embedding-{}.th".format(EMBEDDING_SIZE))

如果没有GPU,训练时间可能比较长

词向量应用

我们可以写个函数,找出与某个词相近的一些词,比方说输入good,他能帮我找出nice,better,best之类的

代码语言:javascript
复制
def find_nearest(word):
    index = word2idx[word]
    embedding = embedding_weights[index]
    cos_dis = np.array([scipy.spatial.distance.cosine(e, embedding) for e in embedding_weights])
    return [idx_to_word[i] for i in cos_dis.argsort()[:10]]
代码语言:javascript
复制
for word in ["two", "america", "computer"]:
    print(word, find_nearest(word))
# 输出
two ['two', 'zero', 'four', 'one', 'six', 'five', 'three', 'nine', 'eight', 'seven']
america ['america', 'states', 'japan', 'china', 'usa', 'west', 'africa', 'italy', 'united', 'kingdom']
computer ['computer', 'machine', 'earth', 'pc', 'game', 'writing', 'board', 'result', 'code', 'website']
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • PyTorch中的nn.Embedding
  • 过程详解
  • Pytorch实现
    • 导包
      • 读取文本数据并处理
        • 实现DataLoader
          • 定义PyTorch模型
            • 训练模型
              • 词向量应用
              相关产品与服务
              批量计算
              批量计算(BatchCompute,Batch)是为有大数据计算业务的企业、科研单位等提供高性价比且易用的计算服务。批量计算 Batch 可以根据用户提供的批处理规模,智能地管理作业和调动其所需的最佳资源。有了 Batch 的帮助,您可以将精力集中在如何分析和处理数据结果上。
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档