前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >百度机器学习训练营笔记——数学基础

百度机器学习训练营笔记——数学基础

作者头像
夜雨飘零
发布2020-05-06 11:56:49
3840
发布2020-05-06 11:56:49
举报
文章被收录于专栏:CSDN博客

原文博客:Doi技术团队 链接地址:https://blog.doiduoyi.com/authors/1584446358138 初心:记录优秀的Doi技术团队学习经历

均值(mean,average)

  • 代表一组数据在分布上的集中趋势和总体上的平均水平。
  • 常说的中心化(Zero-Centered)或者零均值化(Mean-subtraction),就是把每个数值都减去均值。

μ=1N∑i=1Nxi(x:x1,x2,...,xN)\mu=\frac{1}{N}\sum_{i=1}^Nx_i\left(x:x_1,x_2,...,x_N\right)μ=N1​i=1∑N​xi​(x:x1​,x2​,...,xN​)

代码语言:javascript
复制
import numpy as np

# 一维数组
x = np.array([-0.02964322, -0.11363636, 0.39417967, -0.06916996, 0.14260276])
print('数据:', x)

# 求均值
avg = np.mean(x)
print('均值:', avg)

输出:

代码语言:javascript
复制
数据: [-0.02964322 -0.11363636  0.39417967 -0.06916996  0.14260276]
均值: 0.064866578

标准差(Standard Deviation)

  • 代表一组数据在分布上第离散程度。
  • 方差是标准差的平方。

σ=1N∑i=1N(xi−μ)2(x:x1,x2,...,xN)\sigma=\sqrt{\frac{1}{N}\sum_{i=1}^N\left(x_i-\mu\right)^2} \left(x:x_1,x_2,...,x_N\right)σ=N1​i=1∑N​(xi​−μ)2​(x:x1​,x2​,...,xN​)

代码语言:javascript
复制
import numpy as np

# 一维数组
x = np.array([-0.02964322, -0.11363636, 0.39417967, -0.06916996, 0.14260276])
print('数据:', x)

# 求标准差
std = np.std(x)
print('标准差:', std)

输出:

代码语言:javascript
复制
数据: [-0.02964322 -0.11363636  0.39417967 -0.06916996  0.14260276]
标准差: 0.18614576055671836

正态分布(Normal Distribution)

  • 又叫“常态分布”,“高斯分布”,是最重要的一种分布。
  • 均值决定位置,方差决定幅度。
  • 表示:X∼N(μ,σ2)X\sim N\left(\mu,\sigma^2\right)X∼N(μ,σ2)

正态分布的概率密度函数: f(x)=12πσe−(x−μ)22σ2f(x)=\frac{1}{\sqrt {2\pi\sigma}}e^{-\frac{\left(x-\mu\right)^2}{2\sigma^2}}f(x)=2πσ​1​e−2σ2(x−μ)2​

代码语言:javascript
复制
import numpy as np
from matplotlib import pyplot as plt

def nd(x, u=-0, d=1):
    return 1/np.sqrt(2*np.pi*d)*np.exp(-(x-u)**2/2/d**2)
    
x = np.linspace(-3, 3, 50)
y = nd(x)
plt.plot(x, y)

# 调整坐标
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.spines['bottom'].set_position(('data', 0))
ax.spines['left'].set_position(('data', 0))
plt.show()
在这里插入图片描述
在这里插入图片描述

非标准正态分布的标准化(Normalization)

  • 将非标准正态变为标准正态。
  • 将每个数据减均值,除标准差。

y=x−μσy=\frac{x-\mu}{\sigma}y=σx−μ​

代码语言:javascript
复制
import numpy as np
from matplotlib import pyplot as plt

def nd(x, u=0, d=1):
    return 1/np.sqrt(2*np.pi*d)*np.exp(-(x-u)**2/2/d**2)
    
x = np.linspace(-5, 5, 50)
y1 = nd(x)
y2 = nd(x, 0.5, 2)
plt.plot(x, y1)
plt.plot(x, y2)

# 调整坐标
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.spines['bottom'].set_position(('data', 0))
ax.spines['left'].set_position(('data', 0))
plt.show()
在这里插入图片描述
在这里插入图片描述

指数函数(Exponent)

  • 常用2, e的指数函数;
  • 输入为任意实数;
  • 输出为非负数。

y1=2xy_1=2^xy1​=2x y2=exy_2=e^xy2​=ex

代码语言:javascript
复制
import numpy as np
from matplotlib import pyplot as plt

x = np.linspace(-2, 3, 100)
y1 = 2**x
y2 = np.exp(x)
plt.plot(x,y1, color='red')
plt.plot(x, y2, color='blue')

# 调整坐标
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.spines['bottom'].set_position(('data', 0))
ax.spines['left'].set_position(('data', 0))
plt.show()
在这里插入图片描述
在这里插入图片描述

对数函数(Logarithm)

  • 常用以2, e, 10为底的对数函数;
  • 定义域为正数;
  • 值域为全体实数;
  • 输入在(0, 1)范围内时,输出为负数。

y1=log2xy_1=log_2xy1​=log2​x y2=lnxy_2=lnxy2​=lnx y3=lgxy_3=lgxy3​=lgx

代码语言:javascript
复制
import numpy as np
from matplotlib import pyplot as plt

x = np.linspace(0.01, 10, 100)
y1 = np.log2(x)
y2 = np.log(x)
y3 = np.log10(x)
plt.plot(x, y1, color='red')
plt.plot(x, y2, color='blue')
plt.plot(x, y3, color='green')

# 调整坐标
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.spines['bottom'].set_position(('data', 0))
ax.spines['left'].set_position(('data', 0))
plt.show()
在这里插入图片描述
在这里插入图片描述

Softmax函数

  • 在分类网络的输出层中作激活函数,输出概率;
  • 先通过指数函数,把所有输出都变为整数;
  • 再做归一化,每个数都除以所有数的和,输出各分类的概率。

Pi=exi∑i=1Nexi(x:x1,x2,…,xN)P_i=\frac{e^{x_i}}{\sum_{i=1}^Ne^{x_i}}\left(x:x_1,x_2,\ldots,x_N\right)Pi​=∑i=1N​exi​exi​​(x:x1​,x2​,…,xN​)

代码语言:javascript
复制
import numpy as np

x = np.array([-0.02964322, -0.11363636, 0.39417967, -0.06916996, 0.14260276])
print('原始输出:', x)
prob = np.exp(x)/np.sum(np.exp(x))
print('概率输出:', prob)

输出:

代码语言:javascript
复制
原始输出: [-0.02964322 -0.11363636  0.39417967 -0.06916996  0.14260276]
概率输出: [0.17868493 0.16428964 0.27299323 0.17175986 0.21227234]

One-hot 编码

  • 在分类网络中,用于对类别进行编码;
  • 编码长度等于类别数;
  • 每个编码只有一位为1,其余都为0;
  • 所有编码向量都正交。

示例: 假如有5类,则编码为: 第一类:[1, 0, 0, 0, 0] 第二类:[0, 1, 0, 0, 0] 第三类:[0, 0, 1, 0, 0] 第四类:[0, 0, 0, 1, 0] 第五类:[0, 0, 0, 0, 1]

交叉熵(Cross Entropy)

  • 常用于分类问题中,做损失函数;
  • 从分布的角度,让预测概率趋近于标签。

Label:[l1,l2,…,lN]Label:[l_1, l_2, \ldots, l_N]Label:[l1​,l2​,…,lN​] ——经过One-hot编码

predict:[P1,P2,…,PN]predict:[P_1, P_2, \ldots, P_N]predict:[P1​,P2​,…,PN​] ——经过Softmax函数

ce=−∑i=1Nli⋅log⁡Pice=-\sum_{i=1}^Nl_i\cdot\log^{P_i}ce=−i=1∑N​li​⋅logPi​

代码语言:javascript
复制
import numpy as np

# one-hot 编码的标签
label = np.array([0,0,1,0,0])
print('分类标签:', label)
# 网络实际输出
x1 = np.array([-0.02964322, -0.11363636, 3.39417967, -0.06916996, 0.14260276])
x2 = np.array([-0.02964322, -0.11363636, 1.39417967, -0.06916996, 5.14260276])
print('网络输出1:', x1)
print('网络输出2:', x2)
# softmax 之后的模拟概率
p1 = np.exp(x1) / np.sum(np.exp(x1))
p2 = np.exp(x2) / np.sum(np.exp(x2))
print('概率输出1:', p1)
print('概率输出2:', p2)
# 交叉熵
ce1 = -np.sum(label * np.log(p1))
ce2 = -np.sum(label * np.log(p2))
print('交叉熵1:', ce1)
print('交叉熵2:', ce2)

输出:

代码语言:javascript
复制
分类标签: [0 0 1 0 0]
网络输出1: [-0.02964322 -0.11363636  3.39417967 -0.06916996  0.14260276]
网络输出2: [-0.02964322 -0.11363636  1.39417967 -0.06916996  5.14260276]
概率输出1: [0.02877271 0.02645471 0.88293386 0.0276576  0.03418112]
概率输出2: [0.00545423 0.00501482 0.02265122 0.00524284 0.96163688]
交叉熵1: 0.12450498821197674
交叉熵2: 3.787541448750617

激活函数(Activation Function)

  • 引入非线性因素,使模型有更强的表达能力;
  • 输出层采用softmax激活,可以模拟输出概率;
  • sigmoid和tanh都有饱和区,会导致梯度消失;
  • 在深度学习中,sigmoid和tanh主要用于做各种门或开关;
  • 在深度学习中,最常用的激活函数为ReLU及其变体。

δ(x)=11+e−x\delta(x)=\frac{1}{1+e^{-x}}δ(x)=1+e−x1​ Tanh(x)=ex−e−xex+e−xTanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}Tanh(x)=ex+e−xex−e−x​ ReLU(x)=max(x,0)ReLU(x)=max(x, 0)ReLU(x)=max(x,0)

代码语言:javascript
复制
import numpy as np
from matplotlib import pyplot as plt

x = np.linspace(-10, 10, 100)
# plt.figure(31)
plt.figure(figsize=(10, 20))

# Sigmoid
sigmoid = 1 / (1 + np.exp(-x))
top = np.ones(100)
plt.subplot(311)
plt.plot(x, sigmoid, color='blue')
plt.plot(x, top, color='red', linestyle='-.', linewidth=0.5)
plt.title(s='Sigmoid')

# Tanh
tanh = (np.exp(x) - np.exp(-x)) / (np.exp(x) + np.exp(-x))
top = np.ones(100)
bottom = -np.ones(100)
plt.subplot(312)
plt.plot(x, tanh, color='blue')
plt.plot(x, top, color='red', linestyle='-.', linewidth=0.5)
plt.plot(x, bottom, color='red', linestyle='-.', linewidth=0.5)
plt.title('Tanh')

# ReLU
relu = np.maximum(x, 0)
plt.subplot(313)
plt.plot(x, relu, color='blue')
plt.title('ReLU')


# 调整坐标
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.spines['bottom'].set_position(('data', 0))
ax.spines['left'].set_position(('data', 0))
plt.show()
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

源代码地址:https://aistudio.baidu.com/aistudio/projectdetail/176057

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019/11/13 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 均值(mean,average)
  • 标准差(Standard Deviation)
  • 正态分布(Normal Distribution)
  • 非标准正态分布的标准化(Normalization)
  • 指数函数(Exponent)
  • 对数函数(Logarithm)
  • Softmax函数
  • One-hot 编码
  • 交叉熵(Cross Entropy)
  • 激活函数(Activation Function)
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档