前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >FCOS: Fully Convolutional One-Stage Object Detection

FCOS: Fully Convolutional One-Stage Object Detection

作者头像
狼啸风云
修改2022-09-02 22:28:12
7260
修改2022-09-02 22:28:12
举报

fcos_core/modeling/rpn/fcos/loss.py

代码语言:javascript
复制
def prepare_targets(self, points, targets):
    object_sizes_of_interest = [
        [-1, 64],
        [64, 128],
        [128, 256],
        [256, 512],
        [512, INF],
    ]

    expanded_object_sizes_of_interest = []
    for l, points_per_level in enumerate(points):
        # a.new_tensor has the same type with a
        object_sizes_of_interest_per_level = \
            points_per_level.new_tensor(object_sizes_of_interest[l])
        expanded_object_sizes_of_interest.append(
            object_sizes_of_interest_per_level[None].expand(len(points_per_level), -1)
        )


    expanded_object_sizes_of_interest = torch.cat(expanded_object_sizes_of_interest, dim=0)
   
 num_points_per_level = [len(points_per_level) for points_per_level in points]
    self.num_points_per_level = num_points_per_level
    points_all_level = torch.cat(points, dim=0)

 
   # shape: (P, N), (P, N, 4), P is the image nums
    labels, reg_targets = self.compute_targets_for_locations(
        points_all_level, targets, expanded_object_sizes_of_interest
    )


    # labels[i] is a tuple
    for i in range(len(labels)):
        labels[i] = torch.split(labels[i], num_points_per_level, dim=0)
        reg_targets[i] = torch.split(reg_targets[i], num_points_per_level, dim=0)


    labels_level_first = []
    reg_targets_level_first = []
    # labels_level_first[level] has P*N_level elements
    # reg_targets_level_first[level] has shape (P*N_level, 4)
    for level in range(len(points)):
        labels_level_first.append(
            torch.cat([labels_per_im[level] for labels_per_im in labels], dim=0)
        )


        reg_targets_per_level = torch.cat([
            reg_targets_per_im[level]
            for reg_targets_per_im in reg_targets
        ], dim=0)


        if self.norm_reg_targets:
            reg_targets_per_level = reg_targets_per_level / self.fpn_strides[level]
        reg_targets_level_first.append(reg_targets_per_level)


    return labels_level_first, reg_targets_level_first

首先构造了一个expanded_object_sizes_of_interest变量,对于每一个采样点,都需要有一个对应的sizes_of_interest。expanded_object_sizes_of_interest按照每个level创建了该level所有采样点的sizes_of_interest,然后用torch.cat合并起来,形成了(N, 2)形状的数据,N为所有采样点的个数。

num_points_per_level是每个level的点个数,这个用于后续的操作。

points_all_level包含了所有采样点,跟expanded_object_sizes_of_interest类似,也用torch.cat合并,形成了(N, 2)的形状。

compute_targets_for_locations函数使用points_all_level, targets, expanded_object_sizes_of_interest计算分类和回归的标注即labels和reg_targets,形状为(P, N)和(P, N, 4),P为图像数量。

compute_targets_for_locations函数得到的labels和reg_targets是把所有level的数据拼接在一起的。现在要根据每个level的点个数即num_points_per_level把他们拆开,按照level优先做成一个list。最后的结果是labels_level_first[level],拥有P*N_level个元素。reg_targets_level_first[level]形状为(P*N_level, 4),N_level为该level采样点的个数。

代码语言:javascript
复制
def compute_targets_for_locations(self, locations, targets, object_sizes_of_interest):
    labels = []
    reg_targets = []
    xs, ys = locations[:, 0], locations[:, 1]

    for im_i in range(len(targets)):
        targets_per_im = targets[im_i]
        assert targets_per_im.mode == "xyxy"
        bboxes = targets_per_im.bbox
        labels_per_im = targets_per_im.get_field("labels")
        area = targets_per_im.area()

        l = xs[:, None] - bboxes[:, 0][None]
        t = ys[:, None] - bboxes[:, 1][None]
        r = bboxes[:, 2][None] - xs[:, None]
        b = bboxes[:, 3][None] - ys[:, None]
        # shape: (N, M, 4)
        reg_targets_per_im = torch.stack([l, t, r, b], dim=2)

        if self.center_sampling_radius > 0:
            is_in_boxes = self.get_sample_region(
                bboxes,
                self.fpn_strides,
                self.num_points_per_level,
                xs, ys,
                radius=self.center_sampling_radius
            )
        else:
            # no center sampling, it will use all the locations within a ground-truth box
            is_in_boxes = reg_targets_per_im.min(dim=2)[0] > 0

        max_reg_targets_per_im = reg_targets_per_im.max(dim=2)[0]
        # limit the regression range for each location
        is_cared_in_the_level = \
            (max_reg_targets_per_im >= object_sizes_of_interest[:, [0]]) & \
            (max_reg_targets_per_im <= object_sizes_of_interest[:, [1]])

        locations_to_gt_area = area[None].repeat(len(locations), 1)
        locations_to_gt_area[is_in_boxes == 0] = INF
        locations_to_gt_area[is_cared_in_the_level == 0] = INF

        # if there are still more than one objects for a location,
        # we choose the one with minimal area

        # shape (N)
        locations_to_min_area, locations_to_gt_inds = locations_to_gt_area.min(dim=1)

        reg_targets_per_im = reg_targets_per_im[range(len(locations)), locations_to_gt_inds]
        labels_per_im = labels_per_im[locations_to_gt_inds]
        labels_per_im[locations_to_min_area == INF] = 0

        labels.append(labels_per_im)
        reg_targets.append(reg_targets_per_im)

    return labels, reg_targets

由于每张图像可能含有不同数量的bbox,所以先读取targets的labels和bbox,创建labels_per_im变量和reg_targets_per_im变量(形状为(N, M, 4),N为所有采样点的个数,M为bbox数量)。

根据论文3.2节,不同尺度大小的bbox将被分配到不同的fpn level去计算,不在level对应范围的bbox将被忽略。这样操作之后若某一个采样点仍然对应到多个bbox,则取最小面积的bbox。fcos中的实现是把level对应范围之外的bbox面积设成无穷大,用locations_to_gt_area这个变量实现位置到gt中面积的映射,代码48行使reg_targets_per_im取到面积最小的bbox。同理每个采样点也有一个对应的类别,对于不在gt bbox的点类别设成背景。最终的labels_per_im形状为(N),reg_targets_per_im形状为(N, 4)。

代码语言:javascript
复制
def __call__(self, locations, box_cls, box_regression, centerness, targets):
    """
    Arguments:
        locations (list[Tensor])
        box_cls (list[Tensor])
        box_regression (list[Tensor])
        centerness (list[Tensor])
        targets (list[BoxList])

    Returns:
        cls_loss (Tensor)
        reg_loss (Tensor)
        centerness_loss (Tensor)
    """
    N = box_cls[0].size(0)
    num_classes = box_cls[0].size(1)
    labels, reg_targets = self.prepare_targets(locations, targets)

    box_cls_flatten = []
    box_regression_flatten = []
    centerness_flatten = []
    labels_flatten = []
    reg_targets_flatten = []
    for l in range(len(labels)):
        box_cls_flatten.append(box_cls[l].permute(0, 2, 3, 1).reshape(-1, num_classes))
        box_regression_flatten.append(box_regression[l].permute(0, 2, 3, 1).reshape(-1, 4))
        labels_flatten.append(labels[l].reshape(-1))
        reg_targets_flatten.append(reg_targets[l].reshape(-1, 4))
        centerness_flatten.append(centerness[l].reshape(-1))

    box_cls_flatten = torch.cat(box_cls_flatten, dim=0)
    box_regression_flatten = torch.cat(box_regression_flatten, dim=0)
    centerness_flatten = torch.cat(centerness_flatten, dim=0)
    labels_flatten = torch.cat(labels_flatten, dim=0)
    reg_targets_flatten = torch.cat(reg_targets_flatten, dim=0)

    pos_inds = torch.nonzero(labels_flatten > 0).squeeze(1)

    box_regression_flatten = box_regression_flatten[pos_inds]
    reg_targets_flatten = reg_targets_flatten[pos_inds]
    centerness_flatten = centerness_flatten[pos_inds]

    num_gpus = get_num_gpus()
    # sync num_pos from all gpus
    total_num_pos = reduce_sum(pos_inds.new_tensor([pos_inds.numel()])).item()
    num_pos_avg_per_gpu = max(total_num_pos / float(num_gpus), 1.0)

    cls_loss = self.cls_loss_func(
        box_cls_flatten,
        labels_flatten.int()
    ) / num_pos_avg_per_gpu

    if pos_inds.numel() > 0:
        centerness_targets = self.compute_centerness_targets(reg_targets_flatten)

        # average sum_centerness_targets from all gpus,
        # which is used to normalize centerness-weighed reg loss
        sum_centerness_targets_avg_per_gpu = \
            reduce_sum(centerness_targets.sum()).item() / float(num_gpus)

        reg_loss = self.box_reg_loss_func(
            box_regression_flatten,
            reg_targets_flatten,
            centerness_targets
        ) / sum_centerness_targets_avg_per_gpu
        centerness_loss = self.centerness_loss_func(
            centerness_flatten,
            centerness_targets
        ) / num_pos_avg_per_gpu
    else:
        reg_loss = box_regression_flatten.sum()
        reduce_sum(centerness_flatten.new_tensor([0.0]))
        centerness_loss = centerness_flatten.sum()

    return cls_loss, reg_loss, centerness_loss

fcos_core/modeling/rpn/fcos/inference.py

代码语言:javascript
复制
def forward_for_single_feature_map(
            self, locations, box_cls,
            box_regression, centerness,
            image_sizes):
        """
        Arguments:
            anchors: list[BoxList]
            box_cls: tensor of size N, A * C, H, W
            box_regression: tensor of size N, A * 4, H, W
        """
        N, C, H, W = box_cls.shape

        # put in the same format as locations
        box_cls = box_cls.view(N, C, H, W).permute(0, 2, 3, 1)
        box_cls = box_cls.reshape(N, -1, C).sigmoid()
        box_regression = box_regression.view(N, 4, H, W).permute(0, 2, 3, 1)
        box_regression = box_regression.reshape(N, -1, 4)
        centerness = centerness.view(N, 1, H, W).permute(0, 2, 3, 1)
        centerness = centerness.reshape(N, -1).sigmoid()

        candidate_inds = box_cls > self.pre_nms_thresh
        pre_nms_top_n = candidate_inds.view(N, -1).sum(1)
        pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n)

        # multiply the classification scores with centerness scores
        box_cls = box_cls * centerness[:, :, None]

        results = []
        for i in range(N):
            per_box_cls = box_cls[i]
            per_candidate_inds = candidate_inds[i]
            per_box_cls = per_box_cls[per_candidate_inds]

            per_candidate_nonzeros = per_candidate_inds.nonzero()
            per_box_loc = per_candidate_nonzeros[:, 0]
            per_class = per_candidate_nonzeros[:, 1] + 1

            per_box_regression = box_regression[i]
            per_box_regression = per_box_regression[per_box_loc]
            per_locations = locations[per_box_loc]

            per_pre_nms_top_n = pre_nms_top_n[i]

            if per_candidate_inds.sum().item() > per_pre_nms_top_n.item():
                per_box_cls, top_k_indices = \
                    per_box_cls.topk(per_pre_nms_top_n, sorted=False)
                per_class = per_class[top_k_indices]
                per_box_regression = per_box_regression[top_k_indices]
                per_locations = per_locations[top_k_indices]

            detections = torch.stack([
                per_locations[:, 0] - per_box_regression[:, 0],
                per_locations[:, 1] - per_box_regression[:, 1],
                per_locations[:, 0] + per_box_regression[:, 2],
                per_locations[:, 1] + per_box_regression[:, 3],
            ], dim=1)

            h, w = image_sizes[i]
            boxlist = BoxList(detections, (int(w), int(h)), mode="xyxy")
            boxlist.add_field("labels", per_class)
            boxlist.add_field("scores", torch.sqrt(per_box_cls))
            boxlist = boxlist.clip_to_image(remove_empty=False)
            boxlist = remove_small_boxes(boxlist, self.min_size)
            results.append(boxlist)

        return results

这个文件主要完成推理阶段的操作,forward_for_single_feature_map对每个fpn level的结果做后处理。

网络输出的box_cls, box_regression, centerness和locations作为输入,由pre_nms_thresh取阈值,得到大于阈值的点的索引candidate_inds。

对pre_nms_top_n做clamp操作使其最大值为self.pre_nms_top_n,也就是最多保留这么多个点。如果candidate_inds求和(即保留的点数量)大于pre_nms_top_n,则保留box_cls, class, box_regression, locations的top_k个结果。最后把结果添加到boxlist的结构中。

代码语言:javascript
复制
def select_over_all_levels(self, boxlists):
    num_images = len(boxlists)
    results = []
    for i in range(num_images):
        # multiclass nms
        result = boxlist_ml_nms(boxlists[i], self.nms_thresh)
        number_of_detections = len(result)

        # Limit to max_per_image detections **over all classes**
        if number_of_detections > self.fpn_post_nms_top_n > 0:
            cls_scores = result.get_field("scores")
            image_thresh, _ = torch.kthvalue(
                cls_scores.cpu(),
                number_of_detections - self.fpn_post_nms_top_n + 1
            )
            keep = cls_scores >= image_thresh.item()
            keep = torch.nonzero(keep).squeeze(1)
            result = result[keep]
        results.append(result)
    return results

select_over_all_levels对刚才的所有level的结果做nms(C++实现),然后取得分最高的fpn_post_nms_top_n个检测结果,使用torch.kthvalue得到cls_scores的阈值。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2020-05-04 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
对象存储
对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档