前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >GATK4最佳实践-数据预处理篇

GATK4最佳实践-数据预处理篇

作者头像
生信修炼手册
发布2020-05-11 10:42:11
1.7K0
发布2020-05-11 10:42:11
举报

GATK4 官方针对不同的变异类型,给出了好几套用于参考的pipeline。所有的pipeline有一个共同点,就是数据预处理部分。数据预处理的目的,是将原始的fastq或者ubam 文件,经过一系列处理,得到用于变异识别的bam文件,具体的示意图如下:

从示意图可以看出,预处理部分包含了3个主要步骤:

  1. map to reference
  2. Mark Duplicates
  3. Base(Quality Score) Recalibration

之前版本的最佳实践都是给出了具体的gatk的代码,但是GATK4 给出的是用wdl这种workflow 语言编写的流程。对于预处理部分,对应的链接如下:

https://github.com/gatk-workflows/gatk4-data-processing

共给出了3套流程用于参考:

对于没有编程基础的人来说,理解一个wdl 脚本的逻辑是比较头疼的事情。我从3条流程中抽取出最关键的几个部分,整理如下:

1. map to reference

将原始序列和参考基因组进行比对, 官方推荐使用bwa比对软件,主要针对 DNA测序的数据。原始数据的格式为ubam。命令如下

java -jar picard.jar SamToFastq \
       INPUT=${input_bam}  \
       FASTQ=/dev/stdout  \
       INTERLEAVE=true  \
       NON_PF=true  | \
bwa mem -K 100000000 -p -v 3 -t 16 -Y ${bash_ref_fasta}  /dev/stdin - | \
java -jar picard.jar MergeBamAlignment \
    VALIDATION_STRINGENCY=SILENT \
   EXPECTED_ORIENTATIONS=FR \
     ATTRIBUTES_TO_RETAIN=X0 \
    ATTRIBUTES_TO_REMOVE=NM \
    ATTRIBUTES_TO_REMOVE=MD \
    ALIGNED_BAM=/dev/stdin \
    UNMAPPED_BAM=${input_bam} \
    OUTPUT=${output_bam_basename}.bam \
    REFERENCE_SEQUENCE=${ref_fasta} \
    PAIRED_RUN=true \
    SORT_ORDER="unsorted" \
    IS_BISULFITE_SEQUENCE=false \
    ALIGNED_READS_ONLY=false \
    CLIP_ADAPTERS=false \
    MAX_RECORDS_IN_RAM=2000000 \
    ADD_MATE_CIGAR=true \
    MAX_INSERTIONS_OR_DELETIONS=-1 \
    PRIMARY_ALIGNMENT_STRATEGY=MostDistant \
    PROGRAM_RECORD_ID="bwamem" \
    PROGRAM_GROUP_VERSION="${bwa_version}" \
    PROGRAM_GROUP_COMMAND_LINE="bwa mem -K 100000000 -p -v 3 -t 16 -Y ${bash_ref_fasta}" \
    PROGRAM_GROUP_NAME="bwamem" \
    UNMAPPED_READ_STRATEGY=COPY_TO_TAG \
    ALIGNER_PROPER_PAIR_FLAGS=true \
    UNMAP_CONTAMINANT_READS=true \
    ADD_PG_TAG_TO_READS=false

比对参考基因组部分共涉及到3个步骤,第一步picard将ubam转换成fastq; 第二步bwa 比对参考基因组;第三步picard将原始数据ubam和比对产生的aligned bam 合并,产生一个最终的bam文件。每个样本都对应生成一个这样的bam文件。

上面的代码中,有几个需要替换的变量。${input_bam}代表输入的原始序列的ubam格式的文件,${bash_ref_fasta}代表参考基因组序列的bwa 索引,${ref_fasta}代表参考基因组的fasta格式的序列;${output_bam_basename}代表最终输出的bam文件的名字,${bwa_version}代表bwa软件的版本号。

2. Mark Duplicates

标记bam文件中的重复序列,使用picard的MarkDuplicates命令,代码如下:

java -jar picard.jar \
      MarkDuplicates \
      INPUT=${input_bams} \
      OUTPUT=${output_bam_basename}.bam \
      METRICS_FILE=${metrics_filename} \
      VALIDATION_STRINGENCY=SILENT \
      OPTICAL_DUPLICATE_PIXEL_DISTANCE=2500 \
      ASSUME_SORT_ORDER="queryname" \
      CREATE_MD5_FILE=true

${input_bams}代表比对参考基因组之后生成的所有的bam文件,${output_bam_basename}代表产生的bam文件的名字,${metrics_filename} 代表产生的metrics文件的名称。

标记完重复序列之后,需要对产生的bam文件进行排序,命令如下

java -jar picard.jar \
   SortSam \
   INPUT=${input_bam} \
   OUTPUT=/dev/stdout \
   SORT_ORDER="coordinate" \
   CREATE_INDEX=false \
   CREATE_MD5_FILE=false \
   MAX_RECORDS_IN_RAM=300000 | \
java -jar picard.jar \
   SetNmAndUqTags \
   INPUT=/dev/stdin \
   OUTPUT=${output_bam_basename}.bam \
   CREATE_INDEX=true \
   CREATE_MD5_FILE=true \
   REFERENCE_SEQUENCE=${ref_fasta}

${input_bam}代表生成标记重复序列生成的bam文件;{$output_bam_basename}代表输出的排序之后的bam文件的名称,

3. Base(Quality Score) Recalibration

运行BQSR包括三步,第一步的命令如下:

gatk BaseRecalibrator \
   -R ${ref_fasta} \
   -I ${input_bam} \
   --use-original-qualities \
   -O ${recalibration_report_filename} \
   --known-sites ${dbSNP_vcf} \
   --known-sites ${sep=” —known-sites “ known_indels_sites_VCFs}

${ref_fasta}代表参考基因组的fasta序列;${input_bam}代表mark duplicates生成的排序好的bam文件;${recalibration_report_filename}代表产生的report文件的名字;${dbSNP_vcf} 代表NCBI SNP数据库中物种对应的vcf文件;${known_indels_sites_VCFs}代表其他数据库中已知的indel位点的vcf文件。

第二步的命令如下:

gatk GatherBQSRReports \
  -I ${sep=' -I ' input_bqsr_reports} \
  -O ${output_report_filename}

${input_bqsr_reports}代表第一步生成的report文件,每个样本一个,多个样本就指定多次 , 比如 -I 1.bqsr.report -I 2.bqsr.report; ${output_report_filename}代表输出的report文件的名字。

第三步的命令如下:

gatk ApplyBQSR \
   -R ${ref_fasta} \
   -I ${input_bam} \
   -O ${output_bam_basename}.bam \
   -bqsr ${recalibration_report} \
   --static-quantized-quals 10 --static-quantized-quals 20 --static-quantized-quals 30 \
   --add-output-sam-program-record \
   --create-output-bam-md5 \
   --use-original-qualities

${ref_fasta}代表参考基因组的fasta序列;${input_bam}代表mark duplicates生成的排序好的bam文件;{$output_bam_basename}代表输出的bam文件的名称; ${recalibration_report} 代表第二步生成的report文件。

当然你也可以直接运行别人的写好的wdl文件,以下面的这个预处理流程为例

https://github.com/gatk-workflows/gatk4-data-processing

首先得到整个脚本所有的参数列表,命令如下

java -jar womtools.jar inputs processing-for-variant-discovery-gatk4.wdl > processing_inputs.json

这个流程内置了一个hg38的参数模板,内容如下

{
 "##_COMMENT1": "SAMPLE NAME AND UNMAPPED BAMS",
 "PreProcessingForVariantDiscovery_GATK4.sample_name": "NA12878",
 "PreProcessingForVariantDiscovery_GATK4.ref_name": "hg38",
 "PreProcessingForVariantDiscovery_GATK4.flowcell_unmapped_bams_list": "gs://gatk-test-data/wgs_ubam/NA12878_24RG/NA12878_24RG_small.txt",
 "PreProcessingForVariantDiscovery_GATK4.unmapped_bam_suffix": ".bam", "##_COMMENT2": "REFERENCE FILES",
 "PreProcessingForVariantDiscovery_GATK4.ref_dict": "gs://broad-references/hg38/v0/Homo_sapiens_assembly38.dict",
 "PreProcessingForVariantDiscovery_GATK4.ref_fasta": "gs://broad-references/hg38/v0/Homo_sapiens_assembly38.fasta",
 "PreProcessingForVariantDiscovery_GATK4.ref_fasta_index": "gs://broad-references/hg38/v0/Homo_sapiens_assembly38.fasta.fai",
 "PreProcessingForVariantDiscovery_GATK4.SamToFastqAndBwaMem.ref_alt": "gs://broad-references/hg38/v0/Homo_sapiens_assembly38.fasta.64.alt",
 "PreProcessingForVariantDiscovery_GATK4.SamToFastqAndBwaMem.ref_sa": "gs://broad-references/hg38/v0/Homo_sapiens_assembly38.fasta.64.sa",
 "PreProcessingForVariantDiscovery_GATK4.SamToFastqAndBwaMem.ref_amb": "gs://broad-references/hg38/v0/Homo_sapiens_assembly38.fasta.64.amb",
 "PreProcessingForVariantDiscovery_GATK4.SamToFastqAndBwaMem.ref_bwt": "gs://broad-references/hg38/v0/Homo_sapiens_assembly38.fasta.64.bwt",
 "PreProcessingForVariantDiscovery_GATK4.SamToFastqAndBwaMem.ref_ann": "gs://broad-references/hg38/v0/Homo_sapiens_assembly38.fasta.64.ann",
 "PreProcessingForVariantDiscovery_GATK4.SamToFastqAndBwaMem.ref_pac": "gs://broad-references/hg38/v0/Homo_sapiens_assembly38.fasta.64.pac", "##_COMMENT3": "KNOWN SITES RESOURCES",
 "PreProcessingForVariantDiscovery_GATK4.dbSNP_vcf": "gs://broad-references/hg38/v0/Homo_sapiens_assembly38.dbsnp138.vcf",
 "PreProcessingForVariantDiscovery_GATK4.dbSNP_vcf_index": "gs://broad-references/hg38/v0/Homo_sapiens_assembly38.dbsnp138.vcf.idx",
 "PreProcessingForVariantDiscovery_GATK4.known_indels_sites_VCFs": [
   "gs://broad-references/hg38/v0/Mills_and_1000G_gold_standard.indels.hg38.vcf.gz",
   "gs://broad-references/hg38/v0/Homo_sapiens_assembly38.known_indels.vcf.gz"
 ],
 "PreProcessingForVariantDiscovery_GATK4.known_indels_sites_indices": [
   "gs://broad-references/hg38/v0/Mills_and_1000G_gold_standard.indels.hg38.vcf.gz.tbi",
   "gs://broad-references/hg38/v0/Homo_sapiens_assembly38.known_indels.vcf.gz.tbi"
 ],
 "##_COMMENT4": "MISC PARAMETERS",
 "PreProcessingForVariantDiscovery_GATK4.bwa_commandline": "bwa mem -K 100000000 -p -v 3 -t 16 -Y $bash_ref_fasta",
 "PreProcessingForVariantDiscovery_GATK4.compression_level": 5,
 "PreProcessingForVariantDiscovery_GATK4.SamToFastqAndBwaMem.num_cpu": "16",
 "##_COMMENT5": "DOCKERS",
 "PreProcessingForVariantDiscovery_GATK4.gotc_docker": "broadinstitute/genomes-in-the-cloud:2.3.0-1501082129",
 "PreProcessingForVariantDiscovery_GATK4.gatk_docker": "broadinstitute/gatk:4.0.0.0",
 "PreProcessingForVariantDiscovery_GATK4.picard_docker": "broadinstitute/genomes-in-the-cloud:2.3.0-1501082129",
 "PreProcessingForVariantDiscovery_GATK4.python_docker": "python:2.7",
 "##_COMMENT6": "PATHS",  
 "PreProcessingForVariantDiscovery_GATK4.gotc_path": "/usr/gitc/",
 "PreProcessingForVariantDiscovery_GATK4.picard_path": "/usr/gitc/",
 "PreProcessingForVariantDiscovery_GATK4.gatk_path": "/gatk/gatk",
 "##_COMMENT7": "JAVA OPTIONS",
 "PreProcessingForVariantDiscovery_GATK4.SamToFastqAndBwaMem.java_opt": "-Xms3000m",
 "PreProcessingForVariantDiscovery_GATK4.MergeBamAlignment.java_opt": "-Xms3000m",
 "PreProcessingForVariantDiscovery_GATK4.MarkDuplicates.java_opt": "-Xms4000m",
 "PreProcessingForVariantDiscovery_GATK4.SortAndFixTags.java_opt_sort": "-Xms4000m",
 "PreProcessingForVariantDiscovery_GATK4.SortAndFixTags.java_opt_fix": "-Xms500m",
 "PreProcessingForVariantDiscovery_GATK4.BaseRecalibrator.java_opt": "-Xms4000m",
 "PreProcessingForVariantDiscovery_GATK4.GatherBqsrReports.java_opt": "-Xms3000m",
 "PreProcessingForVariantDiscovery_GATK4.ApplyBQSR.java_opt": "-Xms3000m",
 "PreProcessingForVariantDiscovery_GATK4.GatherBamFiles.java_opt": "-Xms2000m",
 "##_COMMENT8": "MEMORY ALLOCATION",
 "PreProcessingForVariantDiscovery_GATK4.GetBwaVersion.mem_size": "1 GB",
 "PreProcessingForVariantDiscovery_GATK4.SamToFastqAndBwaMem.mem_size": "14 GB",
 "PreProcessingForVariantDiscovery_GATK4.MergeBamAlignment.mem_size": "3500 MB",
 "PreProcessingForVariantDiscovery_GATK4.MarkDuplicates.mem_size": "7 GB",
 "PreProcessingForVariantDiscovery_GATK4.SortAndFixTags.mem_size": "5000 MB",
 "PreProcessingForVariantDiscovery_GATK4.CreateSequenceGroupingTSV.mem_size": "2 GB",
 "PreProcessingForVariantDiscovery_GATK4.BaseRecalibrator.mem_size": "6 GB",
 "PreProcessingForVariantDiscovery_GATK4.GatherBqsrReports.mem_size": "3500 MB",
 "PreProcessingForVariantDiscovery_GATK4.ApplyBQSR.mem_size": "3500 MB",
 "PreProcessingForVariantDiscovery_GATK4.GatherBamFiles.mem_size": "3 GB",
 "##_COMMENT9": "DISK SIZE ALLOCATION",
 "PreProcessingForVariantDiscovery_GATK4.agg_small_disk": 200,
 "PreProcessingForVariantDiscovery_GATK4.agg_medium_disk": 300,
 "PreProcessingForVariantDiscovery_GATK4.agg_large_disk": 400,
 "PreProcessingForVariantDiscovery_GATK4.flowcell_small_disk": 100,
 "PreProcessingForVariantDiscovery_GATK4.flowcell_medium_disk": 200,
 "##_COMMENT10": "PREEMPTIBLES",
 "PreProcessingForVariantDiscovery_GATK4.preemptible_tries": 3,
 "PreProcessingForVariantDiscovery_GATK4.agg_preemptible_tries": 3
}

大部分的参数还是很好配置的,但是要注意一点,DOCKERS下配置的是软件对应的docker镜像,是需要安装的。

参数列表配置好之后,运行下面命令即可

java -jar Cromwell.jar run processing-for-variant-discovery-gatk4.wdl —inputs processing_inputs.json

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-05-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信修炼手册 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. map to reference
  • 2. Mark Duplicates
  • 3. Base(Quality Score) Recalibration
相关产品与服务
容器服务
腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档