专栏首页人工智能前沿讲习精选论文 | 网络结构搜索-单目标跟踪【附打包下载】

精选论文 | 网络结构搜索-单目标跟踪【附打包下载】

论文推荐

近年来Siamese网络在单目标跟踪中发展迅速,在近两年的VOT比赛和顶会中Siamese大放异彩。讲者张志鹏将分享经典的siamese跟踪论以及近期的进展。

NAS在自动化模型优化方向取得了很大的成功,近年来NAS领域的新工作层出不穷,短时间内取得了巨大的进展。讲者将分享NAS的发展历程,和最近NAS在缩减搜索代价上的突破,以及NAS中关于搜索空间的研究和进展。

推荐理由:该工作在NAS领域有极大的推进作用,由CMU和DeepMind发表于ICLR2019。DARTS与之前的各类NAS算法不同在于,基于RL或EA的搜索算法对网络结构的处理均在离散空间中进行,这使得整个搜索、优化过程的计算代价巨大。DARTS首次提出将搜索空间映射为连续可微的表示,整个搜索过程直接通过梯度下降和反向传播来进行结构的优化。DARTS在保持结构性能的条件下极大减少了搜索代价,后续一系列优秀的gradient-based NAS工作也均基于DARTS的思路。

—— 方杰民

推荐理由:该工作由Google产出,被收录于CVPR2019. 该方法的两大创新点被后续NAS工作广泛采纳,在NAS领域也具有重要作用。第一,Mnas提出直接在搜索过程中优化目标硬件上网络结构的latency,通过多目标优化的方法基于RL取得了优秀的结果。第二,Mnas提出基于MobileNet的级联block的搜索空间,摒弃了之前基于Cell拓扑结构复杂的搜索空间,Mnas的搜索空间在latency上更为友好,并在精度上也有很大的优势,该搜索空间被后来工作广泛应用。

—— 方杰民

推荐理由:该工作由MIT Song Han实验室产出,被收录于ICLR2019. 本工作还是以减少搜索代价为出发点,对NAS算法进行改进。虽然Differentiable NAS的方法可以极大缩短搜索时间,但是由于其搜索空间由一个连续可微超大网络的表示,传统的Differentiable NAS方法需要占用较多的GPU显存。ProxylessNAS的方法在于优化super network的参数每次只通过一条或部分路径,从而极大减少了显存占用。该工作还针对硬件优化结构,获得了非常优秀的结果。

—— 方杰民

推荐理由:Auto-DeepLab获得了CVPR2019 oral。该工作基于gradient-based NAS方法在分割任务上取得了优秀的结果。该工作创新性的提出了一个针对分割任务的网络层次的搜索空间,Auto-DeepLab的搜索空间主要包含分割网络backbone部分可能的结构,其包含了更多空间分辨率操作的可能性。在backbone中Auto-DeepLab会搜索出一条更适合分割任务的上/下采样的路径,路径上每个节点基于之前工作广泛使用的cell结构。该方法搜索时间较短,性能卓越。

—— 方杰民

推荐理由: 在某种意义上SiamFC是SOT里继KCF后的又一个里程碑,发表在ECCVW2016。Siamese tracking的开山之作SINT将目标跟踪定义为一个匹配问题。将所有的proposal对应的特征提取之后与目标特征一一比对,得到最相似的即为最终目标。但是这种方法速度很慢。为了提高速度,SiamFC将特征提取比对的过程抽象成一个卷积层,以模板对应的特征作为卷积核在搜索区域对应的特征上进行滑窗卷积,多快好省的完成了匹配过程。近期流行的Siamese目标跟踪方法本质上都是在其上面做的改进。

—— 张志鹏

推荐理由: 商汤在CVPR2018的SiamRPN是对SiamFC的一个重要改进。SiamFC存在的一个本质问题是无法进行尺度估计,而跟踪中随着时间的变化目标大小形状一直在变化。为了解决这个问题,SiamRPN在SiamFC的基础上增加了一个用于回归目标大小的head,可以将其看成是一个onestage的特定目标检测。速度快,精度高。

—— 张志鹏

推荐理由: 2018年ECCV中MSRA的一篇工作。自SiamFC在2016年出来之后,一直到2018年前没有很亮眼的改进。SA-SIAM是继SiamRPN后一篇很有意思的改进。SA-SIAM的思想很简单(就像所有的siamese工作那样),利用双流网络去学习输入图像不同的特征,然后将不同的特征cross-correlation之后的相应图进行fusion得到最后结果。为了保持两支网络的差异化,分别将其在Imagenet和tracking的数据集上进行训练。SA-SIAM的后续改进在VOT-2018 real-time challenge取得了第三名。

—— 张志鹏

推荐理由: SA-SIAM团队在2019年CVPR的一篇新工作。其核心思想是将onestage的SiamRPN转成twostage。利用第二个stage refine的结果来进一步提高准确率。值得一提的是在训练时SPM将location的难度分解到两个stage上面。在第一个stage训练时将同类物体都当成正样本,在第二个stage再从这些检测到的同类物体进行精分。降低了传统训练SiamRPN时候直接将target从同时从同类物体和背景中分离的难度。

—— 张志鹏

本文分享自微信公众号 - 人工智能前沿讲习(AIFrontier),作者:must

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-07-02

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • CVPR 2020丨基于记忆增强的全局-局部整合网络:更准确的视频物体检测方法

    终于把这篇NAS最新的综述整理的survey放了上来,文件比较大,内容比较多。这个NAS的survey是A Comprehensive Survey of Ne...

    马上科普尚尚
  • SFFAI分享 | 方杰民:Recent Advances and Highlights of NAS【附PPT与视频资料】

    方杰民,华中科技大学电子信息与通信学院媒体与通信实验室研究生在读,师从王兴刚副教授,地平线平台与技术部算法实习生,主要研究方向为网络结构搜索、模型结构优化。

    马上科普尚尚
  • 万小军:情感文本生成的研究与应用

    本次报告的主题是情感文本生成,先从自然语言生成技术的应用与需求开始讲起,引出情感表达型文本生成问题,从评论生成、情感对话、反讽生成、情感转换以及多模态情感生成这...

    马上科普尚尚
  • three.js 制作属于自己的动态二维码

    这是一个Uint8ClampedArray的类型化数组,这个数组出现最多的也是在imgData上。它会将负数归入0,大于255的数归入255,所以取模就不用了。...

    郭先生的博客
  • Python学习—字符串练习

    小易喜欢的单词具有以下特性: 1.单词每个字母都是大写字母 2.单词没有连续相等的字母 列可能不连续。 例如: 小易不喜欢"ABBA",因为这里有两个连续的'B...

    py3study
  • 并发编程时代,我们应何去何从?

    “十多年来预言家们就一直争论:单个计算机的结构发展到达了极限,计算机技术的真正大幅度飞跃只能通过将多台计算机连接到一起才能实现。”

    博文视点Broadview
  • MySQL高级1.mysql高级3.内置函数4.时间与字符串的相互转换

    要求:表的类型必须是innodb或bdb类型(表的默认类型就是innodb),才可以对此表使用事务

    意气相许的许
  • Nature Geoscience | AI重建缺失的气候信息

    气温观测资料是气候变化研究的基石,全球范围内最早的气温观测可以追溯到17世纪末的苏黎世、布拉格等城市,但是由于观测的站点非常少,因此很难用到区域和全球气候的研究...

    气象学家
  • Vue-CLI项目中路由传参

    小小咸鱼YwY
  • ASP.NET2.0应用中定制安全凭证之实践篇

    一、方案架构   本方案架构很简单——它用一个Web服务来包装ASP.NET 2.0提供者并且为远程客户暴露该凭证管理,你甚至还能在该架构中加上一些失去的功能。...

    张善友

扫码关注云+社区

领取腾讯云代金券