专栏首页点云PCLHoPE杂乱场景的点云数据平面的提取

HoPE杂乱场景的点云数据平面的提取

标题:HoPE: Horizontal Plane Extractor for Cluttered 3D Scenes

作者:Dong, Zhipeng and Gao, Yi and Zhang, Jinfeng and Yan

论文摘要

在杂乱的三维场景中提取水平面是许多机器人应用的基本步骤。针对一般平面分割方法在这一问题上的局限性,我们提出了一种新的平面提取的算法,它能够在杂乱的有序点云或者是无序点云数据中高效的提取平面。通过预校准或惯性测量单元获得的传感器方向将源点云转换为参考坐标系,提出了一种改进的区域增长算法与Z轴聚类算法结合,一种基于主成分分析(PCA)的点云聚类和分割的方法。此外,我们还提出了一种最近邻平面匹配(NNPM)策略来保持连续序列中提取平面的稳定性。对真实场景和合成场景的定性和定量评估表明,我们的方法在对有噪声的点云数据的处理的鲁棒性、准确性和效率方面优于几种最新的方法。并且该算法已经在github 开源:https://github.com/DrawZeroPoint/hope

主要贡献

(1)根据三维点云采集设备定向的角度对点云数据进行变换从而简化水平面提取的过程,提供了快速且稳健的点云聚类和分割以及识别的方法。

(2)以一种合理的方式尽量的减少使用阈值的数量来减少算法的不稳定性,能够在预期的精度和高效的计算时间里达到较好的分割效果。

(3)与点云库PCL以及机器人操作系统(ROS)兼容且开源。

论文图集

多平面提取的算法流程

使用RANSAC和区域增长方法与论文中算法的对比截图

文本提出了一个用于从中提取多个水平面的框架,在混乱场景中获得的有组织的和无组织的3D点云。充分利用采集点云数据的方向信息,并简化包括下采样,点云聚类,细化,和结果识别,算法在第一阶段使用了传感器方向的先验知识将源点云转换为参考点云,其z轴指向上方。该算法框架提供了一些专用的且新颖的功能,能够提供稳健且高效的结果。并且框架的潜在优势还在于场景大小的可变性及其对提取的内容进行连续标识的能力。在真实数据集上的实验表明,即便是动态的场景我们的方法可以保持结果的一致性。

英文摘要

Extracting horizontal planes in heavily cluttered three-dimensional (3D) scenes is an essential procedure for many robotic applications. Aiming at the limitations of general plane segmentation methods on this subject, we present HoPE, a Horizontal Plane Extractor that is able to extract multiple horizontal planes in cluttered scenes with both organized and unorganized 3D point clouds. It transforms the source point cloud in the first stage to the reference coordinate frame using the sensor orientation acquired either by pre-calibration or an inertial measurement unit, thereby leveraging the inner structure of the transformed point cloud to ease the subsequent processes that use two concise thresholds for producing the results. A revised region growing algorithm named Z clustering and a principal component analysis (PCA)-based approach are presented for point clustering and refinement, respectively. Furthermore, we provide a nearest neighbor plane matching (NNPM) strategy to preserve the identities of extracted planes across successive sequences. Qualitative and quantitative evaluations of both real and synthetic scenes demonstrate that our approach outperforms several state-of-the-art methods under challenging circumstances, in terms of robustness to clutter, accuracy, and efficiency. We make our algorithm an off-the-shelf toolbox which is publicly available.

本文分享自微信公众号 - 点云PCL(dianyunPCL),作者:dianyunPCL

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2020-05-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 介绍一篇关于点云的深度学习的文章-PointNet

    PointNet: Deep Learning on PointSets for 3D Classification and Segmentation

    点云PCL博主
  • 3D点云的深度学习

    使用卷积神经网络(CNN)架构的深度学习(DL)现在是解决图像分类任务的标准解决方法。但是将此用于处理3D数据时,问题变得更加复杂。首先,可以使用各种结构来表示...

    点云PCL博主
  • 比较全面的3D数据处理建模等链接收集

    点云PCL博主
  • 关于生物网络安全的新兴领域及相关注意事项(CS AI)

    生物网络安全是21世纪的一个新颖的空间,可满足我们在生物技术和计算方面的创新。在这个空间中,当团队努力开发能够充分确保资产管理和保护的产品和策略时,许多考虑因素...

    用户7035935
  • 案例研究:建立跨大学学校和研究所的共享资源HPC中心(CS AI)

    在过去的几年中,乔治华盛顿大学在广泛需要先进计算资源的领域招募了许多研究人员。我们讨论了首次在大学一级规划和建立高性能计算中心时会遇到的挑战和障碍,并提出了一套...

    用户7035935
  • 重塑经典 | QQ复古头像再设计

    ? 腾讯ISUX isux.tencent.com 社交用户体验设计 ? ? 重新构想复古怀旧,赋予我们喜爱的人物角色更多个性、温度、色彩和熟识度,以提升用...

    腾讯ISUX
  • 世界贸易网络中的通信能力——社区检测的新视角(Social and Information Networks)

    网络中的社区检测在经济和金融环境中起着至关重要的作用,特别是在应用于世界贸易网络时。我们提供了一个新的视角,在这个视角中,通过一个特定的距离标准来识别相互作用强...

    李欣颖6837176
  • 【论文推荐】最新5篇目标跟踪(Object Tracking)相关论文—并行跟踪和验证、光流、自动跟踪、相关滤波集成、CFNet

    【导读】专知内容组整理了最近五篇目标跟踪(Object Tracking)相关文章,为大家进行介绍,欢迎查看! 1. Parallel Tracking and...

    WZEARW
  • SCI闪电速递-快速发表论文杂志整理

    每到年底,都是大家最愁文章的时候。对于毕业了,已经参加工作的,过了年就要交国自然基金的标书,而自己的标书还没有扎实的工作基础;对于没毕业的,过年就意味着交毕业论...

    用户6317549
  • Python Algorithms - C1 Introduction

    算法导论是一本经典的大而全的算法书籍,而本书Python Algorithms不是来取代而是来补充算法导论的,因为算法导论提供的是简易的伪代码和详细的证明,而本...

    宅男潇涧

扫码关注云+社区

领取腾讯云代金券