专栏首页每天学JavaJava并发之锁优化

Java并发之锁优化

高效并发是从JDK 1.5到JDK 1.6的一个重要改进,HotSpot虚拟机开发团队在这个版本上花费了大量的精力去实现各种锁优化技术,如适应性自旋(Adaptive Spinning)、 锁消除(Lock Elimination)、 锁粗化(Lock Coarsening)、 轻量级锁(Lightweight Locking)和偏向锁(Biased Locking)等,这些技术都是为了在线程之间更高效地共享数据,以及解决竞争问题,从而提高程序的执行效率

在深入理解Java虚拟机一书中,说到了锁的优化,其中主要说了自旋锁,锁消除,锁粗化,轻量级锁和偏向锁。结合书籍加上一些自己的看法写下这篇文章,希望通过这篇文章,让我们对于锁有一个新的认知。

在正式介绍这些锁之前,我们先看看什么是锁,我们都知道并发问题是由于多线程访问共享资源造成的,而在HotSpot虚拟机中对象保存在内存中是由三部分组成的:对象头,实例数据,对齐填充字节。我们主要看一下对象头,它也是由三部分组成:Mark Word(运行时数据),指向类的指针,数组长度(只有数组对象才有)。其中Mark Word又记录了锁的相关信息,所以锁是对象拥有的,某一个线程拿到对象的锁,代表着它此时占有这些资源,而其他线程阻塞等待锁释放(针对互斥同步而言)。然后我们在看一看自旋锁,锁消除,锁粗化,轻量级锁和偏向锁。其实我个人觉得自旋锁是线程自己循环的去获取锁,类似于一种行为而并非一种锁。锁消除一些拥有同步的代码,在虚拟机编译时被判断不可能存在共享数据竞争的锁进行消除,它是消除对象的锁。锁粗化指的是一系列的连续操作都对同一个对象反复加锁和解锁是不合理的,我们在连续操作的前后加锁释放锁就可以了。轻量级锁是JDK 1.6之中加入的新型锁机制,为了在没有多线程竞争的前提下,减少传统的重量级锁使用操作系统互斥量产生的性能消耗。偏向锁也是JDK 1.6中引入的一项锁优化,它的目的是消除数据在无竞争情况下的同步原语,进一步提高程序的运行性能。 如果说轻量级锁是在无竞争的情况下使用CAS操作去消除同步使用的互斥量,那偏向锁就是在无竞争的情况下把整个同步都消除掉,连CAS操作都不做了

01

自旋锁与自适应自旋

前面我们讨论互斥同步的时候,提到了互斥同步对性能最大的影响是阻塞的实现,挂起线程和恢复线程的操作都需要转入内核态中完成,这些操作给系统的并发性能带来了很大的压力。 同时,虚拟机的开发团队也注意到在许多应用上,共享数据的锁定状态只会持续很短的一段时间,为了这段时间去挂起和恢复线程并不值得。 如果物理机器有一个以上的处理器,能让两个或以上的线程同时并行执行,我们就可以让后面请求锁的那个线程“稍等一下”,但不放弃处理器的执行时间,看看持有锁的线程是否很快就会释放锁。 为了让线程等待,我们只需让线程执行一个忙循环(自旋),这项技术就是所谓的自旋锁。

备注:操作系统分为用户态和内核态,由于需要限制不同的程序之间的访问能力, 防止他们获取别的程序的内存数据, 或者获取外围设备的数据, 并发送到网络, CPU划分出两个权限等级 -- 用户态 和 内核态

自旋锁在JDK 1.4.2中就已经引入,只不过默认是关闭的,可以使用-XX:+UseSpinning参数来开启,在JDK 1.6中就已经改为默认开启了。 自旋等待不能代替阻塞,且先不说对处理器数量的要求,自旋等待本身虽然避免了线程切换的开销,但它是要占用处理器时间的,因此,如果锁被占用的时间很短,自旋等待的效果就会非常好,反之,如果锁被占用的时间很长,那么自旋的线程只会白白消耗处理器资源,而不会做任何有用的工作,反而会带来性能上的浪费。 因此,自旋等待的时间必须要有一定的限度,如果自旋超过了限定的次数仍然没有成功获得锁,就应当使用传统的方式去挂起线程了。 自旋次数的默认值是10次,用户可以使用参数-XX:PreBlockSpin来更改。

在JDK 1.6中引入了自适应的自旋锁。 自适应意味着自旋的时间不再固定了,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定。 如果在同一个锁对象上,自旋等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也很有可能再次成功,进而它将允许自旋等待持续相对更长的时间,比如100个循环。 另外,如果对于某个锁,自旋很少成功获得过,那在以后要获取这个锁时将可能省略掉自旋过程,以避免浪费处理器资源。 有了自适应自旋,随着程序运行和性能监控信息的不断完善,虚拟机对程序锁的状况预测就会越来越准确,虚拟机就会变得越来越“聪明”了。

02

锁消除

锁消除是指虚拟机即时编译器在运行时,对一些代码上要求同步,但是被检测到不可能存在共享数据竞争的锁进行消除。 锁消除的主要判定依据来源于逃逸分析的数据支持,如果判断在一段代码中,堆上的所有数据都不会逃逸出去从而被其他线程访问到,那就可以把它们当做栈上数据对待,认为它们是线程私有的,同步加锁自然就无须进行。

备注:逃逸分析的基本行为就是分析对象动态作用域:当一个对象在方法中被定义后,它可能被外部方法所引用,例如作为调用参数传递到其他地方中,称为方法逃逸。

也许读者会有疑问,变量是否逃逸,对于虚拟机来说需要使用数据流分析来确定,但是程序员自己应该是很清楚的,怎么会在明知道不存在数据争用的情况下要求同步呢?答案是有许多同步措施并不是程序员自己加入的,同步的代码在Java程序中的普遍程度也许超过了大部分读者的想象。 我们来看看如下代码中的例子,这段非常简单的代码仅仅是输出3个字符串相加的结果,无论是源码字面上还是程序语义上都没有同步。

一段看起来没有同步的代码A:

public String concatString(String s1,String s2,String s3){
    return s1+s2+s3;
}

我们也知道,由于String是一个不可变的类,对字符串的连接操作总是通过生成新的String对象来进行的,因此Javac编译器会对String连接做自动优化。 在JDK 1.5之前,会转化为StringBuffer对象的连续append()操作,在JDK 1.5及以后的版本中,会转化为StringBuilder对象的连续append()操作,上面的代码A可能会变成下面的代码B:

public String concatString(String s1,String s2,String s3){
    StringBuffer sb=new StringBuffer();
    sb.append(s1);
    sb.append(s2);
    sb.append(s3);
    return sb.toString();
}

现在大家还认为这段代码没有涉及同步吗?每个StringBuffer.append()方法中都有一个同步块,锁就是sb对象。 虚拟机观察变量sb,很快就会发现它的动态作用域被限制在concatString()方法内部。 也就是说,sb的所有引用永远不会“逃逸”到concatString()方法之外,其他线程无法访问到它,因此,虽然这里有锁,但是可以被安全地消除掉,在即时编译之后,这段代码就会忽略掉所有的同步而直接执行了。

03

锁粗化

原则上,我们在编写代码的时候,总是推荐将同步块的作用范围限制得尽量小——只在共享数据的实际作用域中才进行同步,这样是为了使得需要同步的操作数量尽可能变小,如果存在锁竞争,那等待锁的线程也能尽快拿到锁。

大部分情况下,上面的原则都是正确的,但是如果一系列的连续操作都对同一个对象反复加锁和解锁,甚至加锁操作是出现在循环体中的,那即使没有线程竞争,频繁地进行互斥同步操作也会导致不必要的性能损耗。

代码B中连续的append()方法就属于这类情况。 如果虚拟机探测到有这样一串零碎的操作都对同一个对象加锁,将会把加锁同步的范围扩展(粗化)到整个操作序列的外部,以代码B为例,就是扩展到第一个append()操作之前直至最后一个append()操作之后,这样只需要加锁一次就可以了。

04

轻量级锁

轻量级锁是JDK 1.6之中加入的新型锁机制,它名字中的“轻量级”是相对于使用操作系统互斥量来实现的传统锁而言的,因此传统的锁机制就称为“重量级”锁。 首先需要强调一点的是,轻量级锁并不是用来代替重量级锁的,它的本意是在没有多线程竞争的前提下,减少传统的重量级锁使用操作系统互斥量产生的性能消耗。

轻量级锁能提升程序同步性能的依据是“对于绝大部分的锁,在整个同步周期内都是不存在竞争的”,这是一个经验数据。 如果没有竞争,轻量级锁使用CAS操作避免了使用互斥量的开销,但如果存在锁竞争,除了互斥量的开销外,还额外发生了CAS操作,因此在有竞争的情况下,轻量级锁会比传统的重量级锁更慢。

05

偏向锁

偏向锁也是JDK 1.6中引入的一项锁优化,它的目的是消除数据在无竞争情况下的同步原语,进一步提高程序的运行性能。 如果说轻量级锁是在无竞争的情况下使用CAS操作去消除同步使用的互斥量,那偏向锁就是在无竞争的情况下把整个同步都消除掉,连CAS操作都不做了。

偏向锁的“偏”,就是偏心的“偏”、 偏袒的“偏”,它的意思是这个锁会偏向于第一个获得它的线程,如果在接下来的执行过程中,该锁没有被其他的线程获取,则持有偏向锁的线程将永远不需要再进行同步。

如果读懂了前面轻量级锁中关于对象头Mark Word与线程之间的操作过程,那偏向锁的原理理解起来就会很简单。 假设当前虚拟机启用了偏向锁(启用参数-XX:+UseBiasedLocking,这是JDK 1.6的默认值),那么,当锁对象第一次被线程获取的时候,虚拟机将会把对象头中的标志位设为“01”,即偏向模式。 同时使用CAS操作把获取到这个锁的线程的ID记录在对象的Mark Word之中,如果CAS操作成功,持有偏向锁的线程以后每次进入这个锁相关的同步块时,虚拟机都可以不再进行任何同步操作(例如Locking、 Unlocking及对Mark Word的Update等)。

当有另外一个线程去尝试获取这个锁时,偏向模式就宣告结束。 根据锁对象目前是否处于被锁定的状态,撤销偏向(Revoke Bias)后恢复到未锁定(标志位为“01”)或轻量级锁定(标志位为“00”)的状态,后续的同步操作就如上面介绍的轻量级锁那样执行.

偏向锁可以提高带有同步但无竞争的程序性能。 它同样是一个带有效益权衡(Trade Off)性质的优化,也就是说,它并不一定总是对程序运行有利,如果程序中大多数的锁总是被多个不同的线程访问,那偏向模式就是多余的。 在具体问题具体分析的前提下,有时候使用参数-XX:-UseBiasedLocking来禁止偏向锁优化反而可以提升性能。

06

锁的优缺点对比

优点

缺点

适用场景

偏向锁

加锁和解锁不需要额外的消耗,和执行非同步方法比仅存在纳秒级的差距。

如果线程间存在锁竞争,会带来额外的锁撤销的消耗。

适用于只有一个线程访问同步块场景。

轻量级锁

竞争的线程不会阻塞,提高了程序的响应速度。

如果始终得不到锁竞争的线程使用自旋会消耗CPU。

追求响应时间。同步块执行速度非常快。

重量级锁

线程竞争不使用自旋,不会消耗CPU。

线程阻塞,响应时间缓慢。

追求吞吐量。同步块执行速度较长。

本文分享自微信公众号 - 每天学Java(gh_fddfb9d03324),作者:每天学Java

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-12-30

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • Java底层-运行时数据区

    在前面关于HotSpot组成中提到,运行时数据区就类似一个工厂,是Java程序运行所在的内存区域,这个区域被JVM所管理,按照虚拟机规范的规定将其划分为:方法区...

    每天学Java
  • 浅聊线程中断

    “ 在前面分析Condition的时候,被阻塞的线程在我关闭应用的时候,会抛出异常,这是因为阻塞的线程被其他线程中断了。其实在学习AQS的时候我们也说过线程中断...

    每天学Java
  • 关于服务隔离

    “ 在微服务的架构中,服务隔离应该是一个比较常见词汇,什么是服务隔离呢,它是指将系统按照一定的原则划分为若干个服务模块,各个模块之间相对独立,无强依赖。当有故障...

    每天学Java
  • JVM中的锁优化原理

    JVM为了提高性能,在内置锁上做了非常多的优化,理解偏向锁、轻量级锁、重量级锁要解决的问题,几种锁的分配和膨胀过程,有助于理解和优化基于锁的并发程序。

    LuceneReader
  • 并发编程原理剖析——浅谈偏向锁、轻量级锁、重量级锁

    为了换取性能,JVM在内置锁上做了非常多的优化,膨胀式的锁分配策略就是其一。理解偏向锁、轻量级锁、重量级锁的要解决的基本问题,几种锁的分配和膨胀过程,有助于编写...

    须臾之余
  • 浅谈偏向锁、轻量级锁、重量级锁

    为了换取性能,JVM在内置锁上做了非常多的优化,膨胀式的锁分配策略就是其一。理解偏向锁、轻量级锁、重量级锁的要解决的基本问题,几种锁的分配和膨胀过程,有助于编写...

    搜云库技术团队
  • CTFCrackTools在Windows下显示A Java Exception has occurred的解决方案

    打CTF做密码学的人一定少不了用这个工具,CTFCrackTools,这个几乎可以号称密码学的神器,但是呢,最近博主遇到了一些麻烦事,每次打开的时候都是显示A ...

    Angel_Kitty
  • indicspecies:计算物种与样本之间关系的强度与生态位宽度

    生物信息知识分享
  • netty案例,netty4.1中级拓展篇十三《Netty基于SSL实现信息传输过程中双向加密验证》

    在实际通信过程中,如果不使用SSL那么信息就是明文传输,从而给非法分子一些可乘之机;

    小傅哥
  • FHSS和物联网

    工业物联网形成的新的数字前景正在极大地改变着企业开展业务的方式。因此,大多数企业必须适应现代网络需求,以便在快速发展的数据驱动型市场保持竞争力。为了帮助企业满足...

    魔法少女伊莉雅

扫码关注云+社区

领取腾讯云代金券