前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >人人都要会编程—金融大佬问我利率预测

人人都要会编程—金融大佬问我利率预测

作者头像
伍六七AI编程
发布2020-06-04 15:29:00
4840
发布2020-06-04 15:29:00
举报
文章被收录于专栏:preparedprepared

事情是这样子的。

在一个夜深人静的晚上,我接到了某证券行业大佬的问题——关于编程。

波哥,睡了吗?

内心OS: 作为一个金融大佬,怎么会这么晚还找我问编程的问题?

后来知道,原来他们公司内部组织了一个比赛——利率预测。

原来是这,这还不简单嘛,不就是一个线性回归模型吗。和人工智能领域的 Hello world 级别的房价预测模型不是一样的嘛。我给他一顿解释,巴拉巴拉。。。

“what, 你说的我好想有点明白了?但是怎么做我还是不知道~” 金融大佬说。

--- 这里是分割线 ---

导入 paddlepaddle 和数据处理包

#加载飞桨、Numpy和相关类库
import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph import Linear
import numpy as np
import os
import random

数据处理

数据处理的代码不依赖框架实现,与使用Python构建房价预测任务的代码相同,这里不再赘述。

def load_data():
    # 从文件导入数据
#     datafile = './housing.data'
    datafile = './national debt2.txt'
    data = []
#     with open(datafile, "r", encoding='utf-8') as f:
#         data = f.read()  #去掉列表中每一个元素的换行符
#         data.append(line + "\n")
#     data = np.fromfile(datafile, sep='\t')
    data = np.loadtxt(datafile, delimiter='\t', encoding='gbk', dtype=np.float64)
    print(data)
    print(">>>>>>")
    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
#     feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
#                       'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
    
    feature_names = [ 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X7','Y' ]
    feature_num = len(feature_names)
    print(data.shape[0])
#     print("size = " + str(len(data))
    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] , feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]
#     print(training_data)
    # 计算train数据集的最大值,最小值,平均值
    maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \
                                 training_data.sum(axis=0) / training_data.shape[0]
    
    # 记录数据的归一化参数,在预测时对数据做归一化
    global max_values
    global min_values
    global avg_values
    max_values = maximums
    min_values = minimums
    avg_values = avgs

    # 对数据进行归一化处理
    for i in range(feature_num):
        #print(maximums[i], minimums[i], avgs[i])
        data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    #ratio = 0.8
    #offset = int(data.shape[0] * ratio)
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data
          
training_data,test_data = load_data()
print(training_data)
print(test_data)

模型设计

模型定义的实质是定义线性回归的网络结构,飞桨建议通过创建Python类的方式完成模型网络的定义,即定义init函数和forward函数。forward函数是框架指定实现前向计算逻辑的函数,程序在调用模型实例时会自动执行forward方法。在forward函数中使用的网络层需要在init函数中声明。

实现过程分如下两步:

  1. 定义init函数:在类的初始化函数中声明每一层网络的实现函数。在房价预测模型中,只需要定义一层全连接层FC,模型结构和1-2 节模型保持一致。
  2. 定义forward函数:构建神经网络结构,实现前向计算过程,并返回预测结果,在本任务中返回的是房价预测结果。

说明:

name_scope变量用于调试模型时追踪多个模型的变量,在此忽略即可,飞桨1.7及之后版本不强制用户设置name_scope


class Regressor(fluid.dygraph.Layer):
    def __init__(self, name_scope):
        super(Regressor, self).__init__(name_scope)
        name_scope = self.full_name()
        # 定义一层全连接层,输出维度是1,激活函数为None,即不使用激活函数
        self.fc = Linear(input_dim=7, output_dim=1, act=None)
    
    # 网络的前向计算函数
    def forward(self, inputs):
        x = self.fc(inputs)
        return x

训练配置

  1. grard函数指定运行训练的机器资源,表明在with作用域下的程序均执行在本机的CPU资源上。dygraph.guard表示在with作用域下的程序会以飞桨动态图的模式执行(实时执行)。
  2. 声明定义好的回归模型Regressor实例,并将模型的状态设置为训练。
  3. 使用load_data函数加载训练数据和测试数据。
  4. 设置优化算法和学习率,优化算法采用随机梯度下降SGD,学习率设置为0.01。

训练配置代码如下所示:

# 定义飞桨动态图的工作环境
with fluid.dygraph.guard():
    # 声明定义好的线性回归模型
    model = Regressor("Regressor")
    # 开启模型训练模式
    model.train()
    # 加载数据
    training_data, test_data = load_data()
    # 定义优化算法,这里使用随机梯度下降-SGD
    # 学习率设置为0.01
    opt = fluid.optimizer.SGD(learning_rate=0.01, parameter_list=model.parameters())

说明:

  1. 默认本案例运行在读者的笔记本上,因此模型训练的机器资源为CPU。
  2. 模型实例有两种状态:训练状态(.train())和预测状态(.eval())。训练时要执行正向计算和反向传播梯度两个过程,而预测时只需要执行正向计算。为模型指定运行状态,有两点原因:

(1)部分高级的算子(例如Drop out和Batch Normalization,在计算机视觉的章节会详细介绍)在两个状态执行的逻辑不同。

(2)从性能和存储空间的考虑,预测状态时更节省内存,性能更好。

  1. 在上述代码中可以发现声明模型、定义优化器等操作都在with创建的 fluid.dygraph.guard()上下文环境中进行,可以理解为with fluid.dygraph.guard()创建了飞桨动态图的工作环境,在该环境下完成模型声明、数据转换及模型训练等操作。

在基于Python实现神经网络模型的案例中,我们为实现梯度下降编写了大量代码,而使用飞桨框架只需要定义SDG就可以实现优化器设置,大大简化了这个过程。

with dygraph.guard(fluid.CPUPlace()):
    EPOCH_NUM = 10   # 设置外层循环次数
    BATCH_SIZE = 10  # 设置batch大小
    
    # 定义外层循环
    for epoch_id in range(EPOCH_NUM):
        # 在每轮迭代开始之前,将训练数据的顺序随机的打乱
        np.random.shuffle(training_data)
        # 将训练数据进行拆分,每个batch包含10条数据
        mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
        # 定义内层循环
        for iter_id, mini_batch in enumerate(mini_batches):
            x = np.array(mini_batch[:, :-1]).astype('float32') # 获得当前批次训练数据
            y = np.array(mini_batch[:, -1:]).astype('float32') # 获得当前批次训练标签(真实房价)
            # 将numpy数据转为飞桨动态图variable形式
            house_features = dygraph.to_variable(x)
            prices = dygraph.to_variable(y)
            
            # 前向计算
            predicts = model(house_features)
            
            # 计算损失
            loss = fluid.layers.square_error_cost(predicts, label=prices)
            avg_loss = fluid.layers.mean(loss)
            if iter_id%20==0:
                print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))
            
            # 反向传播
            avg_loss.backward()
            # 最小化loss,更新参数
            opt.minimize(avg_loss)
            # 清除梯度
            model.clear_gradients()
    # 保存模型
    fluid.save_dygraph(model.state_dict(), 'LR_model')

保存并测试模型

保存模型

将模型当前的参数数据model.state_dict()保存到文件中(通过参数指定保存的文件名 LR_model),以备预测或校验的程序调用,代码如下所示。

# 定义飞桨动态图工作环境
with fluid.dygraph.guard():
    # 保存模型参数,文件名为LR_model
    fluid.save_dygraph(model.state_dict(), 'national_debt')
    print("模型保存成功,模型参数保存在LR_model中")

模型保存成功,模型参数保存在LR_model中

# 选择倒数十条记录数据进行训练
def load_one_example(data_dir):
    f = open(data_dir, 'r')
    datas = f.readlines()
#     print(datas)
    # 选择倒数第10条数据用于测试
    tmp = datas[-10]
    tmp = tmp.strip().split()
    one_data = [float(v) for v in tmp]

    # 对数据进行归一化处理
    for i in range(len(one_data)-1):
        one_data[i] = (one_data[i] - avg_values[i]) / (max_values[i] - min_values[i])

    data = np.reshape(np.array(one_data[:-1]), [1, -1]).astype(np.float32)
    label = one_data[-1]
    return data, label
    
# 加载测试集
def load_test_data(data_dir):
#     f = open(data_dir, 'r')
#     datas = f.readlines()
    one_data = np.loadtxt(data_dir, delimiter='\t', encoding='gbk', dtype=np.double)
    print(one_data)

    maximums, minimums, avgs = one_data.max(axis=0), one_data.min(axis=0), \
                                 one_data.sum(axis=0) / one_data.shape[0]
    
    # 记录数据的归一化参数,在预测时对数据做归一化
    global max_values
    global min_values
    global avg_values
    max_values = maximums
    min_values = minimums
    avg_values = avgs

    # 对数据进行归一化处理
    for i in range(7):
        #print(maximums[i], minimums[i], avgs[i])
        one_data[:, i] = (one_data[:, i] - avgs[i]) / (maximums[i] - minimums[i])

    # 选择倒数第10条数据用于测试
#     tmp = datas
# #     tmp = tmp.strip()
#     one_data = [float(v) for v in tmp]

    # 对数据进行归一化处理
#     for i in range(len(one_data)-1):
#         one_data[i] = (one_data[i] - avg_values[i]) / (max_values[i] - min_values[i])

#     data = np.reshape(np.array(one_data[:-1]), [1, -1]).astype(np.float32)
    return one_data        
    

with dygraph.guard():
    # 参数为保存模型参数的文件地址
    model_dict, _ = fluid.load_dygraph('national_debt')
    print(model_dict)
    model.load_dict(model_dict)
    model.eval()

    # 参数为数据集的文件地址
    test_data, label = load_one_example('./national debt2.txt')
    # 将数据转为动态图的variable格式
    test_data = dygraph.to_variable(test_data)
    results = model(test_data)
    print(test_data)
    # 对结果做反归一化处理
    results = results * (max_values[-1] - min_values[-1]) + avg_values[-1]
    print("Inference result is {}, the corresponding label is {}".format(results.numpy(), label))
#     print("Inference result is {}".format(results.numpy()))        

模型输出

 {'fc.weight': array([[ 0.26267445],
       [ 0.3111655 ],
       [-0.07909104],
       [ 0.14917243],
       [-0.7034063 ],
       [ 0.6225266 ],
       [-0.56594455]], dtype=float32), 'fc.bias': array([0.01486984], dtype=float32)}
name generated_var_0, dtype: VarType.FP32 shape: [1, 7]     lod: {}
    dim: 1, 7
    layout: NCHW
    dtype: float
    data: [-2.80606 -1.25 4.26667 0.671242 0.688889 0.733556 0.251534]
    Inference result is [[21.144272]], the corresponding label is 2.1907

最终的模型:

Y =  0.26267445 * X1 +  0.3111655 * X2 + -0.07909104 * X3 + 0.14917243] * X4 + -0.7034063 * X5 + 0.6225266 * X6 + -0.56594455 * X7

公众号:关注【哥妞】,了解技术,学会泡妞~

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 导入 paddlepaddle 和数据处理包
  • 数据处理
  • 模型设计
  • 训练配置
  • 保存并测试模型
    • 保存模型
      • 最终的模型:
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档