这一讲的理论知识在《计算机视觉基础》一书中都有讲到,依赖简单的线性代数矩阵运算的基础。
坐标系变换流程 变换的好处: 1.1 方便计算 1.2 把很复杂的逻辑拆解成一次次独立的简单变换
旋转后的投影效果 基本代码的套路相同:
需要注意设置着色器里三个变量,至少有三种方法,变化在最后一个变量上,第一种是通过方法去除指针,第二种是取矩阵数组的第一个地址,第三种是直接把矩阵穿进去,本质都是利用c/c++指针的特征
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model)); glUniformMatrix4fv(viewLoc, 1, GL_FALSE, &view[0][0]); ourShader.setMat4("projection", projection);
// main 代码 #include <glad/glad.h> #include <GLFW/glfw3.h> #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" #include <glm/glm.hpp> #include <glm/gtc/matrix_transform.hpp> #include <glm/gtc/type_ptr.hpp> #include "Shader.h" #include <iostream> void framebuffer_size_callback(GLFWwindow* window, int width, int height); void processInput(GLFWwindow *window); // settings const unsigned int SCR_WIDTH = 800; const unsigned int SCR_HEIGHT = 600; int main() { // glfw: initialize and configure // ------------------------------ glfwInit(); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); #ifdef __APPLE__ glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); #endif // glfw window creation // -------------------- GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL); if (window == NULL) { std::cout << "Failed to create GLFW window" << std::endl; glfwTerminate(); return -1; } glfwMakeContextCurrent(window); glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); // glad: load all OpenGL function pointers // --------------------------------------- if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) { std::cout << "Failed to initialize GLAD" << std::endl; return -1; } // build and compile our shader zprogram // ------------------------------------ Shader ourShader("4.1.texture.vs", "4.1.texture.fs"); // set up vertex data (and buffer(s)) and configure vertex attributes // ------------------------------------------------------------------ float vertices[] = { // positions // texture coords 0.5f, 0.5f, 0.0f, 1.0f, 1.0f, // top right 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, // bottom right -0.5f, -0.5f, 0.0f, 0.0f, 0.0f, // bottom left -0.5f, 0.5f, 0.0f, 0.0f, 1.0f // top left }; unsigned int indices[] = { 0, 1, 3, // first triangle 1, 2, 3 // second triangle }; unsigned int VBO, VAO, EBO; glGenVertexArrays(1, &VAO); glGenBuffers(1, &VBO); glGenBuffers(1, &EBO); glBindVertexArray(VAO); glBindBuffer(GL_ARRAY_BUFFER, VBO); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW); // position attribute glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0); glEnableVertexAttribArray(0); // texture coord attribute glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float))); glEnableVertexAttribArray(1); // load and create a texture // ------------------------- unsigned int texture1, texture2; // texture 1 // --------- glGenTextures(1, &texture1); glBindTexture(GL_TEXTURE_2D, texture1); // set the texture wrapping parameters glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // set texture filtering parameters glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // load image, create texture and generate mipmaps int width, height, nrChannels; stbi_set_flip_vertically_on_load(true); // tell stb_image.h to flip loaded texture's on the y-axis. unsigned char *data = stbi_load("container.jpg", &width, &height, &nrChannels, 0); if (data) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data); glGenerateMipmap(GL_TEXTURE_2D); } else { std::cout << "Failed to load texture" << std::endl; } stbi_image_free(data); // texture 2 // --------- glGenTextures(1, &texture2); glBindTexture(GL_TEXTURE_2D, texture2); // set the texture wrapping parameters glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // set texture filtering parameters glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // load image, create texture and generate mipmaps data = stbi_load("awesomeface.png", &width, &height, &nrChannels, 0); if (data) { // note that the awesomeface.png has transparency and thus an alpha channel, so make sure to tell OpenGL the data type is of GL_RGBA glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); glGenerateMipmap(GL_TEXTURE_2D); } else { std::cout << "Failed to load texture" << std::endl; } stbi_image_free(data); // tell opengl for each sampler to which texture unit it belongs to (only has to be done once) // ------------------------------------------------------------------------------------------- ourShader.use(); ourShader.setInt("texture1", 0); ourShader.setInt("texture2", 1); // render loop // ----------- while (!glfwWindowShouldClose(window)) { // input // ----- processInput(window); // render // ------ glClearColor(0.2f, 0.3f, 0.3f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); // bind textures on corresponding texture units glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture1); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture2); // get matrix's uniform location and set matrix ourShader.use(); glm::mat4 model = glm::mat4(1.0f); glm::mat4 view = glm::mat4(1.0f); glm::mat4 projection = glm::mat4(1.0f); model = glm::rotate(model, glm::radians(-55.0f), glm::vec3(1.0f, 0.0f, 0.0f)); view = glm::translate(view, glm::vec3(0.0f, 0.0f, -3.0f)); projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH/(float)SCR_HEIGHT, 0.1f, 100.0f); unsigned int modelLoc = glGetUniformLocation(ourShader.ID, "model"); unsigned int viewLoc = glGetUniformLocation(ourShader.ID, "view"); glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model)); glUniformMatrix4fv(viewLoc, 1, GL_FALSE, &view[0][0]); ourShader.setMat4("projection", projection); // render container glBindVertexArray(VAO); glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0); // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.) // ------------------------------------------------------------------------------- glfwSwapBuffers(window); glfwPollEvents(); } // optional: de-allocate all resources once they've outlived their purpose: // ------------------------------------------------------------------------ glDeleteVertexArrays(1, &VAO); glDeleteBuffers(1, &VBO); glDeleteBuffers(1, &EBO); // glfw: terminate, clearing all previously allocated GLFW resources. // ------------------------------------------------------------------ glfwTerminate(); return 0; } // process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly // --------------------------------------------------------------------------------------------------------- void processInput(GLFWwindow *window) { if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) glfwSetWindowShouldClose(window, true); } // glfw: whenever the window size changed (by OS or user resize) this callback function executes // --------------------------------------------------------------------------------------------- void framebuffer_size_callback(GLFWwindow* window, int width, int height) { // make sure the viewport matches the new window dimensions; note that width and // height will be significantly larger than specified on retina displays. glViewport(0, 0, width, height); }
shader代码,这期的内容增加了矩阵的操作,有些变化
#ifndef SHADER_H #define SHADER_H #include <glad/glad.h> #include <string> #include <fstream> #include <sstream> #include <iostream> class Shader { public: unsigned int ID; // constructor generates the shader on the fly // ------------------------------------------------------------------------ Shader(const char* vertexPath, const char* fragmentPath) { // 1. retrieve the vertex/fragment source code from filePath std::string vertexCode; std::string fragmentCode; std::ifstream vShaderFile; std::ifstream fShaderFile; // ensure ifstream objects can throw exceptions: vShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit); fShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit); try { // open files vShaderFile.open(vertexPath); fShaderFile.open(fragmentPath); std::stringstream vShaderStream, fShaderStream; // read file's buffer contents into streams vShaderStream << vShaderFile.rdbuf(); fShaderStream << fShaderFile.rdbuf(); // close file handlers vShaderFile.close(); fShaderFile.close(); // convert stream into string vertexCode = vShaderStream.str(); fragmentCode = fShaderStream.str(); } catch (std::ifstream::failure& e) { std::cout << "ERROR::SHADER::FILE_NOT_SUCCESFULLY_READ" << std::endl; } const char* vShaderCode = vertexCode.c_str(); const char * fShaderCode = fragmentCode.c_str(); // 2. compile shaders unsigned int vertex, fragment; // vertex shader vertex = glCreateShader(GL_VERTEX_SHADER); glShaderSource(vertex, 1, &vShaderCode, NULL); glCompileShader(vertex); checkCompileErrors(vertex, "VERTEX"); // fragment Shader fragment = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(fragment, 1, &fShaderCode, NULL); glCompileShader(fragment); checkCompileErrors(fragment, "FRAGMENT"); // shader Program ID = glCreateProgram(); glAttachShader(ID, vertex); glAttachShader(ID, fragment); glLinkProgram(ID); checkCompileErrors(ID, "PROGRAM"); // delete the shaders as they're linked into our program now and no longer necessary glDeleteShader(vertex); glDeleteShader(fragment); } // activate the shader // ------------------------------------------------------------------------ void use() { glUseProgram(ID); } // utility uniform functions // ------------------------------------------------------------------------ void setBool(const std::string &name, bool value) const { glUniform1i(glGetUniformLocation(ID, name.c_str()), (int)value); } // ------------------------------------------------------------------------ void setInt(const std::string &name, int value) const { glUniform1i(glGetUniformLocation(ID, name.c_str()), value); } // ------------------------------------------------------------------------ void setFloat(const std::string &name, float value) const { glUniform1f(glGetUniformLocation(ID, name.c_str()), value); } // ------------------------------------------------------------------------ void setVec2(const std::string &name, const glm::vec2 &value) const { glUniform2fv(glGetUniformLocation(ID, name.c_str()), 1, &value[0]); } void setVec2(const std::string &name, float x, float y) const { glUniform2f(glGetUniformLocation(ID, name.c_str()), x, y); } // ------------------------------------------------------------------------ void setVec3(const std::string &name, const glm::vec3 &value) const { glUniform3fv(glGetUniformLocation(ID, name.c_str()), 1, &value[0]); } void setVec3(const std::string &name, float x, float y, float z) const { glUniform3f(glGetUniformLocation(ID, name.c_str()), x, y, z); } // ------------------------------------------------------------------------ void setVec4(const std::string &name, const glm::vec4 &value) const { glUniform4fv(glGetUniformLocation(ID, name.c_str()), 1, &value[0]); } void setVec4(const std::string &name, float x, float y, float z, float w) { glUniform4f(glGetUniformLocation(ID, name.c_str()), x, y, z, w); } // ------------------------------------------------------------------------ void setMat2(const std::string &name, const glm::mat2 &mat) const { glUniformMatrix2fv(glGetUniformLocation(ID, name.c_str()), 1, GL_FALSE, &mat[0][0]); } // ------------------------------------------------------------------------ void setMat3(const std::string &name, const glm::mat3 &mat) const { glUniformMatrix3fv(glGetUniformLocation(ID, name.c_str()), 1, GL_FALSE, &mat[0][0]); } // ------------------------------------------------------------------------ void setMat4(const std::string &name, const glm::mat4 &mat) const { glUniformMatrix4fv(glGetUniformLocation(ID, name.c_str()), 1, GL_FALSE, &mat[0][0]); } private: // utility function for checking shader compilation/linking errors. // ------------------------------------------------------------------------ void checkCompileErrors(unsigned int shader, std::string type) { int success; char infoLog[1024]; if (type != "PROGRAM") { glGetShaderiv(shader, GL_COMPILE_STATUS, &success); if (!success) { glGetShaderInfoLog(shader, 1024, NULL, infoLog); std::cout << "ERROR::SHADER_COMPILATION_ERROR of type: " << type << "\n" << infoLog << "\n -- --------------------------------------------------- -- " << std::endl; } } else { glGetProgramiv(shader, GL_LINK_STATUS, &success); if (!success) { glGetProgramInfoLog(shader, 1024, NULL, infoLog); std::cout << "ERROR::PROGRAM_LINKING_ERROR of type: " << type << "\n" << infoLog << "\n -- --------------------------------------------------- -- " << std::endl; } } } }; #endif
着色器代码,最重要的变化是坐标的计算有变化,增加了3个矩阵的变换
// texture.vs #version 330 core layout (location = 0) in vec3 aPos; layout (location = 1) in vec2 aTexCoord; out vec2 TexCoord; uniform mat4 model; uniform mat4 view; uniform mat4 projection; void main() { gl_Position = projection * view * model * vec4(aPos, 1.0); TexCoord = vec2(aTexCoord.x, aTexCoord.y); } // texture.fs #version 330 core out vec4 FragColor; in vec2 TexCoord; // texture sampler uniform sampler2D texture1; uniform sampler2D texture2; void main() { // FragColor = texture(texture1, TexCoord); // FragColor = texture(texture1, TexCoord) * vec4(ourColor, 1.0); FragColor = mix(texture(texture1, TexCoord), texture(texture2, TexCoord), 0.2); }
本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。
我来说两句