首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >重新定义Pytorch中的TensorDataset,可实现transforms

重新定义Pytorch中的TensorDataset,可实现transforms

作者头像
marsggbo
发布2020-06-12 09:41:24
发布2020-06-12 09:41:24
92200
代码可运行
举报
运行总次数:0
代码可运行
代码语言:javascript
代码运行次数:0
运行
复制
class TensorsDataset(torch.utils.data.Dataset):

    '''
    A simple loading dataset - loads the tensor that are passed in input. This is the same as
    torch.utils.data.TensorDataset except that you can add transformations to your data and target tensor.
    Target tensor can also be None, in which case it is not returned.
    '''

    def __init__(self, data_tensor, target_tensor=None, transforms=None, target_transforms=None):
        if target_tensor is not None:
            assert data_tensor.size(0) == target_tensor.size(0)
        self.data_tensor = data_tensor
        self.target_tensor = target_tensor

        if transforms is None:
            transforms = []
        if target_transforms is None:
            target_transforms = []

        if not isinstance(transforms, list):
            transforms = [transforms]
        if not isinstance(target_transforms, list):
            target_transforms = [target_transforms]

        self.transforms = transforms
        self.target_transforms = target_transforms

    def __getitem__(self, index):

        data_tensor = self.data_tensor[index]
        for transform in self.transforms:
            data_tensor = transform(data_tensor)

        if self.target_tensor is None:
            return data_tensor

        target_tensor = self.target_tensor[index]
        for transform in self.target_transforms:
            target_tensor = transform(target_tensor)

        return data_tensor, target_tensor

    def __len__(self):
        return self.data_tensor.size(0)
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019-03-01 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档