前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >numpy中数组的遍历技巧

numpy中数组的遍历技巧

作者头像
生信修炼手册
发布2020-06-17 15:05:54
12.4K0
发布2020-06-17 15:05:54
举报
文章被收录于专栏:生信修炼手册

在numpy中,当需要循环处理数组中的元素时,能用内置通函数实现的肯定首选通函数,只有当没有可用的通函数的情况下,再来手动进行遍历,遍历的方法有以下几种

1. 内置for循环

最基础的遍历方法还是for循环,用法如下

代码语言:javascript
复制
# 一维数组,和普通的python序列对象一致
>>> a
array([0, 1, 2, 3, 4])
>>> for i in a:
... print(i)
...
0
1
2
3
4
# 二维数组,每次遍历一行,以列表的形式返回一行的元素
>>> a = np.arange(12).reshape(3, 4)
>>> a
array([[ 0, 1, 2, 3],
       [ 4, 5, 6, 7],
       [ 8, 9, 10, 11]])

>>> for i in a:
... print(i)
...
[0 1 2 3]
[4 5 6 7]
[ 8 9 10 11]

for循环中得到的是对应元素的副本,所以通过上述方式只能访问,不能修改原始数组中的值。

2. flat迭代器

数组的flat属性返回的是数组的迭代器,通过这个迭代器,可以一层for循环就搞定多维数组的访问,用法如下

代码语言:javascript
复制
>>> a
array([[ 0, 1, 2, 3],
       [ 4, 5, 6, 7],
       [ 8, 9, 10, 11]])
>>> for i in a.flat:
...     print(i)
...
0
1
2
3
4
5
6
7
8
9
10
11

3. nditer迭代器

numpy中的nditer函数可以返回数组的迭代器,该迭代器的功能比flat更加强大和灵活,在遍历多维数组时,通过order参数可以指定遍历的顺序,C表示C语言的风格,优先处理行,F表示Fortran语言的风格,优先处理列,用法如下

代码语言:javascript
复制
>>> a
array([[ 0, 1, 2, 3],
       [ 4, 5, 6, 7],
       [ 8, 9, 10, 11]])
# 默认按行处理
>>> for i in np.nditer(a, order='C'):
... print(i)
...
0
1
2
3
4
5
6
7
8
9
10
11
# 按列处理
>>> for i in np.nditer(a, order='F'):
... print(i)
...
0
4
8
1
5
9
2
6
10
3
7
11

普通的遍历只能访问元素,而nditer可以允许我们在遍历的同时修改原始数组中的元素,只需要op_flags参数即可,用法如下

代码语言:javascript
复制
>>> a
array([[ 0, 1, 2, 3],
       [ 4, 5, 6, 7],
       [ 8, 9, 10, 11]])
>>> for i in np.nditer(a, op_flags = ['readwrite']):
... i *= 2
...
>>> a
array([[ 0, 2, 4, 6],
       [ 8, 10, 12, 14],
       [16, 18, 20, 22]])

>>> for i in np.nditer(a, op_flags = ['writeonly']):
... i += 2
...
>>> a
array([[ 2, 4, 6, 8],
       [10, 12, 14, 16],
       [18, 20, 22, 24]])

nditer更强大的功能在于广播遍历,通过内置的广播机制,可以实现两个数组的组合,用法如下

代码语言:javascript
复制
>>> a = np.arange(12).reshape(3, 4)
>>> a
array([[ 0, 1, 2, 3],
       [ 4, 5, 6, 7],
       [ 8, 9, 10, 11]])
>>> b = np.arange(4)
>>> b
array([0, 1, 2, 3])
>>> np.nditer([a, b])
<numpy.nditer object at 0x7f9db6b11170>
>>> for x,y in np.nditer([a,b]):
... print(x,y)
...
0 0
1 1
2 2
3 3
4 0
5 1
6 2
7 3
8 0
9 1
10 2
11 3
```

```
>>> b = np.arange(3).reshape(-1, 1)
>>> b
array([[0],
       [1],
       [2]])
>>> a
array([[ 0, 1, 2, 3],
       [ 4, 5, 6, 7],
       [ 8, 9, 10, 11]])
>>> for x,y in np.nditer([a,b]):
... print(x,y)
...
0 0
1 0
2 0
3 0
4 1
5 1
6 1
7 1
8 2
9 2
10 2
11 2

简单的元素访问直接使用for循环迭代数组即可,注意二维数组和一维数组的区别,nditer的3个特点对应不同的使用场景,当遇到对应的情况时,可以选择nditer来进行遍历。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-06-11,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信修炼手册 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档