专栏首页游戏开发之旅贝塞尔曲线后续

贝塞尔曲线后续

有关贝塞尔曲线的定义以及公式已经写在了上一篇文章中,这篇文章主要介绍这个曲线的应用

通过贝塞尔公式结算得到一个路径数组,结合dotween的DoPath做曲线动画

测试代码如下:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Vproject : MonoBehaviour
{
    public Transform start;
    public Transform end;
    public float ef = 1;
    public int vertCount = 3;
    public int pointCount = 10;     //曲线上点的个数
    private Vector3[] linePointList;
    void Start()
    {
        List<Vector3> newP = new List<Vector3>();
    }

    // Update is called once per frame
    void Update()
    {

    }
    public void OnDrawGizmos()
    {
        Vector3 center = (start.position + end.position) / 2;
        Vector3 centerProject = Vector3.Project(center, start.position - end.position);
        transform.position= Vector3.MoveTowards(center, centerProject, ef);
        Debug.DrawLine(center, centerProject,Color.yellow);
        Debug.DrawLine(start.position,end.position,Color.red);
        linePointList = BezierUtils.GetBeizerPointList(start.position, transform.position, end.position, vertCount);
        for (int i = 0; i < linePointList.Length - 1; i++)
        {
            Debug.DrawLine(linePointList[i], linePointList[i + 1], Color.yellow);
        }
    }
}
using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public static class BezierUtils
{
    /// <summary>
    /// 线性
    /// </summary>
    /// <param name="p0">起点</param>
    /// <param name="p1">终点</param>
    /// <param name="t">【0-1】</param>
    /// <returns></returns>
    public static Vector3 BezierPoint(Vector3 p0, Vector3 p1, float t)
    {
        return (1 - t) * p0 + t * p1;
    }

    /// <summary>
    /// 二阶曲线
    /// </summary>
    /// <param name="p0"></param>
    /// <param name="p1"></param>
    /// <param name="p2"></param>
    /// <param name="t"></param>
    /// <returns></returns>
    public static Vector3 BezierPoint(Vector3 p0, Vector3 p1, Vector3 p2, float t)
    {
        Vector3 p0p1 = (1 - t) * p0 + t * p1;
        Vector3 p1p2 = (1 - t) * p1 + t * p2;
        Vector3 result = (1 - t) * p0p1 + t * p1p2;
        return result;
    }

    /// <summary>
    /// 三阶曲线
    /// </summary>
    /// <param name="p0"></param>
    /// <param name="p1"></param>
    /// <param name="p2"></param>
    /// <param name="p3"></param>
    /// <param name="t"></param>
    /// <returns></returns>
    public static Vector3 BezierPoint(Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float t)
    {
        Vector3 result;
        Vector3 p0p1 = (1 - t) * p0 + t * p1;
        Vector3 p1p2 = (1 - t) * p1 + t * p2;
        Vector3 p2p3 = (1 - t) * p2 + t * p3;
        Vector3 p0p1p2 = (1 - t) * p0p1 + t * p1p2;
        Vector3 p1p2p3 = (1 - t) * p1p2 + t * p2p3;
        result = (1 - t) * p0p1p2 + t * p1p2p3;
        return result;
    }

    /// <summary>
    /// 多阶曲线  (可以递归 有多组线性组合)
    /// </summary>
    /// <param name="t"></param>
    /// <param name="p"></param>
    /// <returns></returns>
    public static Vector3 BezierPoint(float t, List<Vector3> p)
    {
        if (p.Count < 2)
            return p[0];
        List<Vector3> newP = new List<Vector3>();
        for (int i = 0; i < p.Count - 1; i++)
        {
            Vector3 p0p1 = (1 - t) * p[i] + t * p[i + 1];
            newP.Add(p0p1);
        }
        return BezierPoint(t, newP);
    }

    /// <summary>
    /// 获取存储贝塞尔曲线点的数组(二阶)
    /// </summary>
    /// <param name="startPoint">起始点</param>
    /// <param name="controlPoint">控制点</param>
    /// <param name="endPoint">目标点</param>
    /// <param name="segmentNum">采样点的数量</param>
    /// <returns>存储贝塞尔曲线点的数组</returns>
    public static Vector3[] GetBeizerPointList(Vector3 startPoint, Vector3 controlPoint, Vector3 endPoint, int segmentNum)
    {
        Vector3[] path = new Vector3[segmentNum];
        for (int i = 1; i <= segmentNum; i++)
        {
            float t = i / (float)segmentNum;
            Vector3 pixel = BezierPoint(startPoint, controlPoint, endPoint, t);
            path[i - 1] = pixel;
        }
        return path;
    }

    /// <summary>
    /// 获取存储贝塞尔曲线点的数组(多阶)
    /// </summary>
    /// <param name="segmentNum">采样点的数量</param>
    /// <param name="p">控制点集合</param>
    /// <returns></returns>
    public static Vector3[] GetBeizerPointList(int segmentNum, List<Vector3> p)
    {
        Vector3[] path = new Vector3[segmentNum];
        for (int i = 1; i <= segmentNum; i++)
        {
            float t = i / (float)segmentNum;
            Vector3 pixel = BezierPoint(t, p);
            path[i - 1] = pixel;
        }
        return path;
    }

}
本文参与 腾讯云自媒体分享计划 ,欢迎热爱写作的你一起参与!
本文分享自作者个人站点/博客:https://blog.csdn.net/CJB_King复制
如有侵权,请联系 cloudcommunity@tencent.com 删除。
登录 后参与评论
0 条评论

相关文章

  • 贝塞尔曲线

    一条贝塞尔曲线是由一组定义的控制点 P0到 Pn,在 n 调用它的顺序 (n = 1 为线性,2 为二次,等.)。第一个和最后一个控制点总是具有终结点的曲线;然...

    bering
  • silverlight:贝塞尔曲线

    Silverlight并没有象flash那样直接提供画线、画圆、画曲线的方法,只能用Path来生成贝塞尔曲线。 下面是示例代码: XAML部分: <UserCo...

    菩提树下的杨过
  • 贝塞尔曲线 原

    transition-timing-function过渡函数,有linear,ease,ease-in,ease-out,ease-in-out,cubic-b...

    山河木马
  • [1106]python bezier(贝塞尔)曲线

    首先简单了解一下什么是贝塞尔曲线(余弦函数曲线我就不多说了哈!),贝塞尔曲线又称贝兹曲线,是法国工程师皮埃尔.贝塞尔于1962年发表。贝塞尔曲线广泛应用...

    周小董
  • Android 贝塞尔曲线解析

    相信很多同学都知道“贝塞尔曲线”这个词,我们在很多地方都能经常看到。利用“贝塞尔曲线”可以做出很多好看的UI效果,本篇博客就让我们一起学习“贝塞尔曲线”。

    老马的编程之旅
  • 如何理解并应用贝塞尔曲线贝塞尔曲线原理实际应用总结

    贝塞尔曲线又叫贝兹曲线,在大学高数中一度让我非常头疼。前阵子练手写动画的时候,发现贝塞尔曲线可以应用于轨迹的绘制以及定义动画曲线。

    用户2356368
  • OpenGL ES 绘制贝塞尔曲线

    最近要求为图像设计流线型曲线边框,想着可以用 OpenGL 绘制贝塞尔曲线,再加上模板测试来实现,趁机尝试一波。

    字节流动
  • 贝塞尔曲线开发的艺术

    用户1907613
  • AS3贝塞尔曲线类

    贝塞尔曲线被广泛用于塔防类的游戏,当然一些特殊的缓动效果有些 也用 到这个 , 目前 这个没必要我们担心 , TweenMax 为我们提供了这些功能.

    py3study
  • 关于贝塞尔曲线的故事

    概述 在开始本故事的之前,先来介绍下故事的背景。话说几百年前,从天而降一座神山,远远看去像一天光滑的丝带,它的名字叫做:“贝塞尔曲线"。有大法师预言登上这座神山...

    用户1148881
  • 贝塞尔曲线动作小工具

    在使用Cocos Creator做曲线动作时,总是有些刻意逃避使用cc.bezierTo(贝塞尔曲线),而是简单使用cc.moveTo、cc.JumpTo来模拟...

    张晓衡
  • 如何理解并应用贝塞尔曲线

    贝塞尔曲线又叫贝兹曲线,在大学高数中一度让我非常头疼。前阵子练手写动画的时候,发现贝塞尔曲线可以应用于轨迹的绘制以及定义动画曲线。

    用户2356368
  • android贝塞尔曲线实现波浪效果

    本文实例为大家分享了android贝塞尔曲线实现波浪效果的具体代码,供大家参考,具体内容如下

    砸漏
  • Android贝塞尔曲线实现手指轨迹

    本文实例为大家分享了Android贝塞尔曲线实现手指轨迹的具体代码,供大家参考,具体内容如下

    砸漏
  • android画图之贝塞尔曲线讲解

    首先对于《赛贝尔曲线》不是很了解的童鞋,请自觉白度百科、google等等... 为了方便偷懒的童鞋,这里给个《贝赛尔曲线》百科地址,以及一段话简述《贝赛尔曲线...

    xiangzhihong
  • OpenGL 实践之贝塞尔曲线绘制

    说到贝塞尔曲线,大家肯定都不陌生,网上有很多关于介绍和理解贝塞尔曲线的优秀文章和动态图。

    音视频开发进阶
  • Flash/Flex学习笔记(20):贝塞尔曲线

    贝塞尔曲线的身影几乎在所有绘图软件中都有出现,下面的代码演示了如何用AS3.0画一段简单的贝塞尔曲线(没有使用Document文档类,想测试的朋友,直接把下面的...

    菩提树下的杨过
  • Android贝塞尔曲线实现消息拖拽消失

    写消息拖拽效果的文章不少,但是大部分都把自定义View写死了,我们要实现的是传入一个View,每个View都可以实现拖拽消失爆炸的效果,当然我也是站在巨人的肩膀...

    砸漏
  • 贝塞尔曲线的绘制原理与应用

    声明:本文不含复杂数学公式,学渣放心阅读吧?(我仿佛看到了学渣们留下了激动的泪水)

    网罗开发

扫码关注腾讯云开发者

领取腾讯云代金券