前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >在动作观察,运动想象和站立和坐姿执行过程中解码脑电节律

在动作观察,运动想象和站立和坐姿执行过程中解码脑电节律

作者头像
脑机接口社区
发布2020-07-01 14:54:43
5750
发布2020-07-01 14:54:43
举报
文章被收录于专栏:脑机接口脑机接口

事件相关去同步化与同步化(ERD/S)和运动相关皮质电位(MRCP)在下肢康复的脑机接口(BCI)中,特别是在站立和坐姿中,起着重要的作用。然而,人们对站立和坐着的大脑皮层活动的差异知之甚少,尤其是大脑的意图是如何调节运动前的感觉运动节奏的。在本研究中,研究人员旨在研究在站立和坐着的动作观察(AO)、运动想象(MI)和运动执行(ME) 期间连续性EEG节奏的解码。研究人员开发了一项行为任务,在该任务中,参与者被指示对坐立和站坐的动作执行AO和MI/ME。实验结果表明,在AO期间ERD比较显著,而在MI期间ERS在感觉运动区域的alpha带较为典型。结合常用空间模式(FBCSP)和支持向量机(SVM)进行离线和分类器测试分析。离线分析表明,AO和MI的分类在站-坐转换时的平均准确率最高,为82.73±2.54%。通过分类器测试分析,研究人员证明了MI范式比ME范式具有更高的解码神经意图的性能。

为了研究在连续脑电图记录下的运动执行过程中解码MI信号(包括ERD/S)和MRCPs的可行性,整个实验过程由MI和ME两个阶段组成。每一阶段包括3次运行过程(每次5次试验),共包含30次试验。实验以坐姿开始,然后重复5次坐立和站坐交替试验。图1显示了每次试验中四个状态的序列:R、AO、idle和任务执行状态(MI或ME)。在R状态期间,显示器上显示黑色屏幕长达6秒,参与者被要求保持放松和静止。为了避免指令的模糊性,我们提供了持续4 ~ 5秒的坐-站或站-坐视频任务的视频刺激来指导参与者处于AO状态。参与者被要求在听到音频提示后立即完成两个阶段的任务。在ME阶段,参与者被要求在音频提示后完成一系列自主节奏的动作。在MI阶段,参与者在听到音频提示后开始想象指定的动作。在MI期间,可以通过音频或视觉提示获得运动启动,而在ME期间,可以从EMG信号获得运动启动。

Fig 1.每个实验的时间安排

每个试验的的时间安排表,显示的四种状态包括休眠(0-4秒)、AO(4-8秒)、idle(8-9秒)和任务执行(MI或ME(9-13秒)。

数据采集

搭建传感系统,在整个实验过程中同时记录EEG、EOG、EMG信号,如图2所示。

Fig 2

下图为国际10-20系统通道配置(11个EEG和2个EOG记录电极)。左面板上每个电极的对应位置;右边的面板表示索引。

Fig 3

EEG和EOG信号

  • 使用g.USBampRESEARCH来重新记录EEG和EOG信号,如上图所示。
  • 采样率设置为1200 Hz。
  • EEG:将11个电极放置在FCz,C3,Cz,C4,CP3,CPz,CP4,P3,Pz,P4和POz上
  • EOG:将2个电极放在右眼下方(VEOG)和(HEOG)上
  • 在整个实验过程中,EEG和EOG信号的阻抗均保持在10kΩ以下
  • 在MI和ME会话中均提供了EEG和EOG信号
  • MI / ME会话在每次从坐-站/从站-坐的转换时,原始EEG和EOG的尺寸为participants×runs×trials×channels×timepoints(8×3×5×6×16800)。

Fig 4.6个EMG记录电极的通道配置,显示每个电极的索引对应位置

EMG信号

  • 使用OpenBCI记录EMG信号。
  • 采样率设置为250 Hz。
  • 将6个电极置于两下肢的股直肌(RF)、胫骨前肌(TA)和腓肠肌外侧(GL)上,如上图所示。
  • 在实验会话上只有记录肌电图
  • 每次坐-站/站-坐转换的原始肌电图形成在 participants×runs×trials×channels×timepoints (8×3×5×6×3500)。

数据预处理

离线信号处理使用MNE-python软件包(0.20.0版)执行。在MI和ME期间,预处理过程分为两个主要步骤:基于EEG的MI和基于EEG的MRCP。下图说明了EEG,EOG和EMG数据处理的过程。

Fig 5.EEG、EOG和肌电图数据预处理概述。

EEG、EOG和肌电图数据预处理概述:

  1. 展示了MI在EEG和EOG数据上的预处理过程;
  2. 展示了从ME中提取MRCPs的预处理步骤。

运动想象:陷波滤波器设置为50Hz,以减少电噪声。使用2阶非因果Butterworth滤波器对记录的EEG和EOG信号进行1–40 Hz之间的带通滤波。两个信号都被下采样到250 Hz。

将基于独立成分分析(ICA)的眼动伪影校正算法应用于EOG信号,对脑电数据中剔除的伪影分量进行识别。将脑电图信号按每类(R、AO、MI)开始的epoch分段4 s,如下图所示,然后采用移0.2 s的2 s滑动窗口进行预处理。

来自每个参与者的每个类别的处理数据包含试验×窗口×通道×时间点的集合(15×11×11×500)。

使用scikit-learn对15个试验使用left-one(trial) out交叉验证(LOOCV)实现受试者独立分类任务,如图6所示。在训练过程中,首先对训练集进行信号预处理,如图5所示。利用滤波器组公共空间模式(FBCSP)从下采样训练集中提取空间特征,生成用于分类任务的特征向量。重要的是,FBCSP在MI分类任务中通常表现良好。引入FBCSP作为公共空间模式(CSP)的扩展,从多个滤波器组中自主选择识别的脑电图特征。在本研究中,9个滤波器组带通滤波器的带宽为4 Hz从4到40 Hz (4 - 8 Hz, 8-12Hz,…,36–40 Hz)。构建了6个滤波器组带通滤波器,其中第一个频带的带宽为0.4 Hz,其他频带带宽为0.5 Hz (0.1-0.5 Hz,0.5 - 1 Hz,…,2.5-3Hz)。

Fig 6.

图6所示为基于网格搜索算法的二分类模型的leave-one(trial)-outcross-validation (LOOCV)架构。受试者逐个独立执行LOOCV。

Fig 7.

图7所示。在MI会话中使用的伪在线分析流程图。当连续检测5次(AO >= 5)产生动作观察时,应用网格搜索算法辅助确定动作观察与运动想象(AOvs.MI)分类模型。

图8.对MI任务的神经反应。在整个试验中,针对事件的频谱相关摄动(ERSP)在4–40 Hz之间进行分组,在(a)sit-to-stand和(b) stand-to-sit任务相比,R基线状态(1 - 0 s)。从0-4 s的时间间隔对应于R状态,从4-8 s的间隔对应于AO状态,从8-9 s的间隔对应于空闲状态,从9 s开始的时间间隔对应于执行状态。为了可视化,采样率设置为600 Hz。与基线相比,所有目前的ERSP值均具有统计学意义(p = 0:05)。

Fig 8. 对MI任务的神经反应

图9所示。从-1.5-1 s到实际运动开始,8个参与者sit-to-stand (a) andstand-to-sit (b)转换的Grandaverage MRCP波形(11个通道)。

Fig 9.

下图头皮地形图显示了MRCP振幅随时间变化的空间表征。

研究人员在这项研究中开发的任务中,参与者被指示对坐立和站坐的动作执行AO和MI/ME。实验结果表明,在AO期间ERD比较显著,而在MI期间ERS在感觉运动区域的alpha带较为典型。结合常用空间模式(FBCSP)和支持向量机(SVM)进行离线和分类器测试分析。离线分析表明,AO和MI的分类在站-坐转换时的平均准确率最高,为82.73±2.54%。通过分类器测试分析,研究人员证明了MI范式比ME范式具有更高的解码神经意图的性能。

这些观察让我们看到了使用基于AO和MI集成的开发任务构建未来基于外骨骼的康复系统的前景。

项目案例代码

fbcsp处理运动想象数据源码

run_fbcsp_mi

代码语言:javascript
复制
import numpy as np
import os
import sys
import csv
from sklearn.model_selection import KFold

from pysitstand.model import fbcsp
from pysitstand.utils import sliding_window, sliding_window2
from pysitstand.eeg_preprocessing import apply_eeg_preprocessing
"""
Binary classification model.
We apply FBCSP-SVM (9 subbands from 4-40 Hz) on the subject-dependent scheme (leave a single trial for testing) for EEG-based MI classification.
x sec window size with y% step (0.1 means overlap 90%)

# How to run

>> python run_fbcsp_mi.py <window_size> <step> <filter order> <performing task> <prediction motel> <artifact remover>

>> python run_fbcsp_mi.py 2 0.1 4 stand R_vs_AO rASR
>> python run_fbcsp_mi.py 2 0.1 4 sit R_vs_AO rASR
>> python run_fbcsp_mi.py 2 0.1 4 stand AO_vs_MI rASR
>> python run_fbcsp_mi.py 2 0.1 4 sit AO_vs_MI rASR

>> python run_fbcsp_mi.py 2 0.1 4 stand AO_vs_MI ICA && python run_fbcsp_mi.py 2 0.1 4 stand R_vs_AO ICA
>> python run_fbcsp_mi.py 2 0.1 4 sit AO_vs_MI ICA && python run_fbcsp_mi.py 2 0.1 4 sit R_vs_AO ICA
"""

def load_data(subject, task, prediction_model, artifact_remover, filter_order, window_size, step, sfreq):
    #load data the preprocessing

    # filter params
    notch = {'f0': 50}
    bandpass = {'lowcut': 1, 'highcut': 40, 'order': filter_order}
    ica = {'new_sfreq': sfreq, 'save_name': None, 'threshold': 2}
    rASR = {'new_sfreq': sfreq}

    # it will perform preprocessing from this order
    if artifact_remover == 'ICA':
        filter_medthod = {'notch_filter': notch, 
                    'butter_bandpass_filter': bandpass,
                    'ica': ica}
    elif artifact_remover == 'rASR':
        filter_medthod = {'notch_filter': notch, 
                    'butter_bandpass_filter': bandpass,
                    'rASR': rASR}

    
    # apply filter and ICA 
    data = apply_eeg_preprocessing(subject_name=subject, session='mi', task=task, filter_medthod=filter_medthod)

    # data : 15 sec 
    # define data
    R_class = data[:,:,int(2*sfreq):int(6*sfreq)]          # rest 2 to 6 s
    AO_class = data[:,:,int(6*sfreq):int(10*sfreq)] 
    MI_class = data[:,:,int(11*sfreq):int(15*sfreq)]       # beep at 11s

    len_data_point = R_class.shape[-1]
    num_windows = int(((len_data_point-win_len_point)/(win_len_point*step))+1)

    # define class
    if prediction_model == 'R_vs_AO':
        # sliding windows
        R_class_slided = np.zeros([15, num_windows, 11, window_size*sfreq])
        AO_class_slided = np.zeros([15, num_windows, 11, window_size*sfreq])
        for i, (R,AO) in enumerate(zip(R_class, AO_class)):
            R_class_slided[i,:,:,:] = np.copy(sliding_window2(np.array([R]), win_sec_len=window_size, step=step, sfreq=sfreq))
            AO_class_slided[i,:,:,:] = np.copy(sliding_window2(np.array([AO]), win_sec_len=window_size, step=step, sfreq=sfreq))
        X0 = np.copy(R_class_slided)
        X1 = np.copy(AO_class_slided)
    elif prediction_model == 'AO_vs_MI':
        # sliding windows
        AO_class_slided = np.zeros([15, num_windows, 11, window_size*sfreq])
        MI_class_slided = np.zeros([15, num_windows, 11, window_size*sfreq])
        for i, (AO,MI) in enumerate(zip(AO_class, MI_class)):
            AO_class_slided[i,:,:,:] = np.copy(sliding_window2(np.array([AO]), win_sec_len=window_size, step=step, sfreq=sfreq))
            MI_class_slided[i,:,:,:] = np.copy(sliding_window2(np.array([MI]), win_sec_len=window_size, step=step, sfreq=sfreq))
        X0 = np.copy(AO_class_slided)
        X1 = np.copy(MI_class_slided)
            
    del data, R_class, AO_class, MI_class

    y0 = np.zeros([X0.shape[0], X0.shape[1]])
    y1 = np.ones([X1.shape[0], X1.shape[1]])
    assert len(X0) == len(y0)
    assert len(X1) == len(y1)
    return X0, y0, X1, y1

if __name__ == "__main__":

    window_size = int(sys.argv[1]) # 1,2,3 sec.
    step = float(sys.argv[2]) # 0.1 --> overlap(90%)
    filter_order = int(sys.argv[3]) # 2 order of all fillter
    task = sys.argv[4] # stand, sit
    prediction_model = sys.argv[5] # R_vs_AO, AO_vs_MI
    artifact_remover = sys.argv[6] # ICA, rASR
    sfreq = 250 # new sampling rate [max = 1200 Hz]
    win_len_point = int(window_size*sfreq)

    for x in sys.argv:
        print("Argument: ", x)
    
    subjects = [ 'S01', 'S02', 'S03', 'S04', 'S05', 'S06', 'S07', 'S08']

    if task == 'stand':
        save_name = 'sit_to_stand_mi'
    elif task == 'sit':
        save_name = 'stand_to_sit_mi'

    if prediction_model == 'R_vs_AO':
        save_path = 'MI-v2-'+artifact_remover+'-FBCSP-cv-'+str(window_size)+'s_'+task+'_'+prediction_model+'_filter_order_'+str(filter_order)
    elif prediction_model == 'AO_vs_MI':
        save_path = 'MI-v2-'+artifact_remover+'-FBCSP-cv-'+str(window_size)+'s_'+task+'_'+prediction_model+'_filter_order_'+str(filter_order)

    header = [ 'fold', 'accuracy', 
                '0.0 f1-score', '1.0 f1-score', 'average f1-score',
                '0.0 recall', '1.0 recall', 'average recall',
                '0.0 precision', '1.0 precision', 'average precision',
                'sensitivity', 'specificity'
            ]

    sum_value_all_subjects = []
    for subject in subjects:
        from joblib import dump, load
        print('===================='+subject+'==========================')

        for directory in [save_path, save_path+'/model', save_path+'/y_slice_wise']:
            if not os.path.exists(directory):
                os.makedirs(directory)

        #load data the preprocessing
        X0, y0, X1, y1 = load_data(subject=subject, task=task, 
                                    prediction_model=prediction_model, 
                                    artifact_remover=artifact_remover,
                                    filter_order=filter_order, 
                                    window_size=window_size, 
                                    step=step, 
                                    sfreq=sfreq)

        with open(save_path+'/'+save_path+'_result.csv', 'a') as csvFile:
            writer = csv.writer(csvFile)
            writer.writerow([str(subject)])
            writer.writerow(header)

        kf = KFold(n_splits=15, shuffle=False) # Define the split - into 15 folds 
        print(kf)
        accuracy_sum, precision_0_sum, recall_0_sum, f1_0_sum, precision_1_sum, recall_1_sum, f1_1_sum, precision_sum, recall_sum, f1_sum = [], [], [], [], [], [], [], [], [], []
        sen_sum, spec_sum = [], []
        predict_result = []
        X_csp_com = []
        for index_fold, (train_idx, test_idx) in enumerate(kf.split(X0)):
            print("=============fold {:02d}==============".format(index_fold))
            print('fold: {}, train_index: {}, test_index: {}'.format(index_fold, train_idx, test_idx))

            X0_train, X1_train = X0[train_idx], X1[train_idx]
            y0_train, y1_train = y0[train_idx], y1[train_idx]
            X0_test, X1_test = X0[test_idx], X1[test_idx]
            y0_test, y1_test = y0[test_idx], y1[test_idx]

            X_train = np.concatenate((X0_train.reshape(-1, X0_train.shape[-2], X0_train.shape[-1]), 
                        X1[train_idx].reshape(-1, X1_train.shape[-2], X1_train.shape[-1])), axis=0)
            y_train = np.concatenate((y0_train.reshape(-1), y1_train.reshape(-1)), axis=0)

            X_test = np.concatenate((X0_test.reshape(-1, X0_test.shape[-2], X0_test.shape[-1]), 
                        X1[test_idx].reshape(-1, X1_test.shape[-2], X1_test.shape[-1])), axis=0)
            y_test = np.concatenate((y0_test.reshape(-1), y1_test.reshape(-1)), axis=0)
            
            print("Dimesion of training set is: {} and label is: {}".format (X_train.shape, y_train.shape))
            print("Dimesion of testing set is: {} and label is: {}".format( X_test.shape, y_test.shape))
        
            # classification
            accuracy, report, sen, spec, X_test_csp, y_true, y_pred, classifier = fbcsp(X_train=X_train, y_train=y_train,
                                                                                        X_test=X_test, y_test=y_test, 
                                                                                        filter_order=filter_order, session='mi')
            dump(classifier, save_path+'/model/'+subject+save_name+'_'+str(index_fold+1).zfill(2)+'.gz') 
            
            # saving
            precision_0 = report['0.0']['precision']
            recall_0 = report['0.0']['recall']
            f1_0 = report['0.0']['f1-score']

            precision_1 = report['1.0']['precision']
            recall_1 = report['1.0']['recall']
            f1_1 = report['1.0']['f1-score']
            
            precision = report['weighted avg']['precision']
            recall = report['weighted avg']['recall']
            f1 = report['weighted avg']['f1-score']

            accuracy_sum.append(accuracy)

            precision_0_sum.append(precision_0)
            recall_0_sum.append(recall_0)
            f1_0_sum.append(f1_0)

            precision_1_sum.append(precision_1)
            recall_1_sum.append(recall_1)
            f1_1_sum.append(f1_1)

            precision_sum.append(precision)
            recall_sum.append(recall)
            f1_sum.append(f1)
            sen_sum.append(sen)
            spec_sum.append(spec)

            row = [index_fold+1, accuracy,
                f1_0, f1_1, f1,
                recall_0, recall_1, recall,
                precision_0, precision_1, precision,
                sen, spec]


            predict_result.append([y_true, y_pred])
            X_csp_com.append(X_test_csp)

            with open(save_path+'/'+save_path+'_result.csv', 'a') as csvFile:
                writer = csv.writer(csvFile)
                writer.writerow(row)

            print(subject, 'save DONE!!!!')
            print('***************************************')
            print('***************************************')
            print('***************************************')
            print('***************************************')

        mean_value = [np.mean(accuracy_sum),
        np.mean(f1_0_sum), np.mean(f1_1_sum), np.mean(f1_sum),
        np.mean(recall_0_sum), np.mean(recall_1_sum), np.mean(recall_sum),
        np.mean(precision_0_sum), np.mean(precision_1_sum), np.mean(precision_sum),
        np.mean(sen_sum), np.mean(spec_sum)]

        sum_value_all_subjects.append(mean_value)

        np.savez(save_path+'/y_slice_wise/'+subject+save_name+'.npz', x = np.array(X_csp_com), y = np.array(predict_result))

        with open(save_path+'/'+save_path+'_result.csv', 'a') as csvFile:
            writer = csv.writer(csvFile)
            writer.writerow(['mean', mean_value[0], 
            mean_value[1], mean_value[2], mean_value[3], 
            mean_value[4], mean_value[5], mean_value[6], 
            mean_value[7], mean_value[8], mean_value[9],
            mean_value[10], mean_value[11]])
            writer.writerow([])
    
    mean_all = np.mean(sum_value_all_subjects, axis=0)
    print(mean_all)

    with open(save_path+'/'+save_path+'_result.csv', 'a') as csvFile:
        writer = csv.writer(csvFile)
        writer.writerow(['accuracy', 
                    '0.0 f1-score', '1.0 f1-score', 'average f1-score',
                    '0.0 recall', '1.0 recall', 'average recall',
                    '0.0 precision', '1.0 precision', 'average precision',
                    'sensitivity', 'specificity'
                    ])
        writer.writerows(sum_value_all_subjects)
        writer.writerow(mean_all)

论文信息

Decoding EEG Rhythms During Action Observation, Motor Imagery, and Execution for Standing and Sitting

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-06-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 脑机接口社区 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
图数据库 KonisGraph
图数据库 KonisGraph(TencentDB for KonisGraph)是一种云端图数据库服务,基于腾讯在海量图数据上的实践经验,提供一站式海量图数据存储、管理、实时查询、计算、可视化分析能力;KonisGraph 支持属性图模型和 TinkerPop Gremlin 查询语言,能够帮助用户快速完成对图数据的建模、查询和可视化分析。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档