前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >训练模型的3种方法

训练模型的3种方法

作者头像
lyhue1991
发布2020-07-20 15:41:22
1.4K0
发布2020-07-20 15:41:22
举报

Pytorch没有官方的高阶API。一般通过nn.Module来构建模型并编写自定义训练循环。

为了更加方便地训练模型,作者编写了仿keras的Pytorch模型接口:torchkeras, 作为Pytorch的高阶API。

本章我们主要详细介绍Pytorch的高阶API如下相关的内容。

  • 构建模型的3种方法(继承nn.Module基类,使用nn.Sequential,辅助应用模型容器)
  • 训练模型的3种方法(脚本风格,函数风格,torchkeras.Model类风格)
  • 使用GPU训练模型(单GPU训练,多GPU训练)

本篇我们介绍训练模型的3种方法。

pytorch通常需要用户编写自定义训练循环,训练循环的代码风格因人而异。

有3类典型的训练循环代码风格:脚本形式训练循环,函数形式训练循环,类形式训练循环。

下面以minist数据集的分类模型的训练为例,演示这3种训练模型的风格。

〇,准备数据

import torch 
from torch import nn 
from torchkeras import summary,Model 

import torchvision 
from torchvision import transforms

transform = transforms.Compose([transforms.ToTensor()])

ds_train = torchvision.datasets.MNIST(root="./data/minist/",train=True,download=True,transform=transform)
ds_valid = torchvision.datasets.MNIST(root="./data/minist/",train=False,download=True,transform=transform)

dl_train =  torch.utils.data.DataLoader(ds_train, batch_size=128, shuffle=True, num_workers=4)
dl_valid =  torch.utils.data.DataLoader(ds_valid, batch_size=128, shuffle=False, num_workers=4)

print(len(ds_train))
print(len(ds_valid))

60000
10000
%matplotlib inline
%config InlineBackend.figure_format = 'svg'

#查看部分样本
from matplotlib import pyplot as plt 

plt.figure(figsize=(8,8)) 
for i in range(9):
    img,label = ds_train[i]
    img = torch.squeeze(img)
    ax=plt.subplot(3,3,i+1)
    ax.imshow(img.numpy())
    ax.set_title("label = %d"%label)
    ax.set_xticks([])
    ax.set_yticks([]) 
plt.show()

一,脚本风格

脚本风格的训练循环最为常见。

net = nn.Sequential()
net.add_module("conv1",nn.Conv2d(in_channels=1,out_channels=32,kernel_size = 3))
net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("conv2",nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5))
net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("dropout",nn.Dropout2d(p = 0.1))
net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))
net.add_module("flatten",nn.Flatten())
net.add_module("linear1",nn.Linear(64,32))
net.add_module("relu",nn.ReLU())
net.add_module("linear2",nn.Linear(32,10))

print(net)
Sequential(
  (conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
  (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
  (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (dropout): Dropout2d(p=0.1, inplace=False)
  (adaptive_pool): AdaptiveMaxPool2d(output_size=(1, 1))
  (flatten): Flatten()
  (linear1): Linear(in_features=64, out_features=32, bias=True)
  (relu): ReLU()
  (linear2): Linear(in_features=32, out_features=10, bias=True)
)
summary(net,input_shape=(1,32,32))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 32, 30, 30]             320
         MaxPool2d-2           [-1, 32, 15, 15]               0
            Conv2d-3           [-1, 64, 11, 11]          51,264
         MaxPool2d-4             [-1, 64, 5, 5]               0
         Dropout2d-5             [-1, 64, 5, 5]               0
 AdaptiveMaxPool2d-6             [-1, 64, 1, 1]               0
           Flatten-7                   [-1, 64]               0
            Linear-8                   [-1, 32]           2,080
              ReLU-9                   [-1, 32]               0
           Linear-10                   [-1, 10]             330
================================================================
Total params: 53,994
Trainable params: 53,994
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.003906
Forward/backward pass size (MB): 0.359695
Params size (MB): 0.205971
Estimated Total Size (MB): 0.569572
----------------------------------------------------------------
import datetime
import numpy as np 
import pandas as pd 
from sklearn.metrics import accuracy_score

def accuracy(y_pred,y_true):
    y_pred_cls = torch.argmax(nn.Softmax(dim=1)(y_pred),dim=1).data
    return accuracy_score(y_true,y_pred_cls)

loss_func = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(params=net.parameters(),lr = 0.01)
metric_func = accuracy
metric_name = "accuracy"

epochs = 3
log_step_freq = 100

dfhistory = pd.DataFrame(columns = ["epoch","loss",metric_name,"val_loss","val_"+metric_name]) 
print("Start Training...")
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("=========="*8 + "%s"%nowtime)

for epoch in range(1,epochs+1):  

    # 1,训练循环-------------------------------------------------
    net.train()
    loss_sum = 0.0
    metric_sum = 0.0
    step = 1
    
    for step, (features,labels) in enumerate(dl_train, 1):
    
        # 梯度清零
        optimizer.zero_grad()

        # 正向传播求损失
        predictions = net(features)
        loss = loss_func(predictions,labels)
        metric = metric_func(predictions,labels)
        
        # 反向传播求梯度
        loss.backward()
        optimizer.step()

        # 打印batch级别日志
        loss_sum += loss.item()
        metric_sum += metric.item()
        if step%log_step_freq == 0:   
            print(("[step = %d] loss: %.3f, "+metric_name+": %.3f") %
                  (step, loss_sum/step, metric_sum/step))
            
    # 2,验证循环-------------------------------------------------
    net.eval()
    val_loss_sum = 0.0
    val_metric_sum = 0.0
    val_step = 1

    for val_step, (features,labels) in enumerate(dl_valid, 1):
        
        predictions = net(features)
        val_loss = loss_func(predictions,labels)
        val_metric = metric_func(predictions,labels)

        val_loss_sum += val_loss.item()
        val_metric_sum += val_metric.item()

    # 3,记录日志-------------------------------------------------
    info = (epoch, loss_sum/step, metric_sum/step, 
            val_loss_sum/val_step, val_metric_sum/val_step)
    dfhistory.loc[epoch-1] = info
    
    # 打印epoch级别日志
    print(("\nEPOCH = %d, loss = %.3f,"+ metric_name + \
          "  = %.3f, val_loss = %.3f, "+"val_"+ metric_name+" = %.3f") 
          %info)
    nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print("\n"+"=========="*8 + "%s"%nowtime)
        
print('Finished Training...')

Start Training...
================================================================================2020-06-26 12:49:16
[step = 100] loss: 0.742, accuracy: 0.745
[step = 200] loss: 0.466, accuracy: 0.843
[step = 300] loss: 0.363, accuracy: 0.880
[step = 400] loss: 0.310, accuracy: 0.898

EPOCH = 1, loss = 0.281,accuracy  = 0.908, val_loss = 0.087, val_accuracy = 0.972

================================================================================2020-06-26 12:50:32
[step = 100] loss: 0.103, accuracy: 0.970
[step = 200] loss: 0.114, accuracy: 0.966
[step = 300] loss: 0.112, accuracy: 0.967
[step = 400] loss: 0.108, accuracy: 0.968

EPOCH = 2, loss = 0.111,accuracy  = 0.967, val_loss = 0.082, val_accuracy = 0.976

================================================================================2020-06-26 12:51:47
[step = 100] loss: 0.093, accuracy: 0.972
[step = 200] loss: 0.095, accuracy: 0.971
[step = 300] loss: 0.092, accuracy: 0.972
[step = 400] loss: 0.093, accuracy: 0.972

EPOCH = 3, loss = 0.098,accuracy  = 0.971, val_loss = 0.113, val_accuracy = 0.970

================================================================================2020-06-26 12:53:09
Finished Training...

二,函数风格

该风格在脚本形式上作了简单的函数封装。

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.layers = nn.ModuleList([
            nn.Conv2d(in_channels=1,out_channels=32,kernel_size = 3),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Dropout2d(p = 0.1),
            nn.AdaptiveMaxPool2d((1,1)),
            nn.Flatten(),
            nn.Linear(64,32),
            nn.ReLU(),
            nn.Linear(32,10)]
        )
    def forward(self,x):
        for layer in self.layers:
            x = layer(x)
        return x
net = Net()
print(net)
Net(
  (layers): ModuleList(
    (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Dropout2d(p=0.1, inplace=False)
    (5): AdaptiveMaxPool2d(output_size=(1, 1))
    (6): Flatten()
    (7): Linear(in_features=64, out_features=32, bias=True)
    (8): ReLU()
    (9): Linear(in_features=32, out_features=10, bias=True)
  )
)
summary(net,input_shape=(1,32,32))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 32, 30, 30]             320
         MaxPool2d-2           [-1, 32, 15, 15]               0
            Conv2d-3           [-1, 64, 11, 11]          51,264
         MaxPool2d-4             [-1, 64, 5, 5]               0
         Dropout2d-5             [-1, 64, 5, 5]               0
 AdaptiveMaxPool2d-6             [-1, 64, 1, 1]               0
           Flatten-7                   [-1, 64]               0
            Linear-8                   [-1, 32]           2,080
              ReLU-9                   [-1, 32]               0
           Linear-10                   [-1, 10]             330
================================================================
Total params: 53,994
Trainable params: 53,994
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.003906
Forward/backward pass size (MB): 0.359695
Params size (MB): 0.205971
Estimated Total Size (MB): 0.569572
----------------------------------------------------------------
import datetime
import numpy as np 
import pandas as pd 
from sklearn.metrics import accuracy_score

def accuracy(y_pred,y_true):
    y_pred_cls = torch.argmax(nn.Softmax(dim=1)(y_pred),dim=1).data
    return accuracy_score(y_true,y_pred_cls)

model = net
model.optimizer = torch.optim.SGD(model.parameters(),lr = 0.01)
model.loss_func = nn.CrossEntropyLoss()
model.metric_func = accuracy
model.metric_name = "accuracy"

def train_step(model,features,labels):
    
    # 训练模式,dropout层发生作用
    model.train()
    
    # 梯度清零
    model.optimizer.zero_grad()
    
    # 正向传播求损失
    predictions = model(features)
    loss = model.loss_func(predictions,labels)
    metric = model.metric_func(predictions,labels)

    # 反向传播求梯度
    loss.backward()
    model.optimizer.step()

    return loss.item(),metric.item()

def valid_step(model,features,labels):
    
    # 预测模式,dropout层不发生作用
    model.eval()
    
    predictions = model(features)
    loss = model.loss_func(predictions,labels)
    metric = model.metric_func(predictions,labels)
    
    return loss.item(), metric.item()


# 测试train_step效果
features,labels = next(iter(dl_train))
train_step(model,features,labels)

(2.32741117477417, 0.1015625)

def train_model(model,epochs,dl_train,dl_valid,log_step_freq):

    metric_name = model.metric_name
    dfhistory = pd.DataFrame(columns = ["epoch","loss",metric_name,"val_loss","val_"+metric_name]) 
    print("Start Training...")
    nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print("=========="*8 + "%s"%nowtime)

    for epoch in range(1,epochs+1):  

        # 1,训练循环-------------------------------------------------
        loss_sum = 0.0
        metric_sum = 0.0
        step = 1

        for step, (features,labels) in enumerate(dl_train, 1):

            loss,metric = train_step(model,features,labels)

            # 打印batch级别日志
            loss_sum += loss
            metric_sum += metric
            if step%log_step_freq == 0:   
                print(("[step = %d] loss: %.3f, "+metric_name+": %.3f") %
                      (step, loss_sum/step, metric_sum/step))

        # 2,验证循环-------------------------------------------------
        val_loss_sum = 0.0
        val_metric_sum = 0.0
        val_step = 1

        for val_step, (features,labels) in enumerate(dl_valid, 1):

            val_loss,val_metric = valid_step(model,features,labels)

            val_loss_sum += val_loss
            val_metric_sum += val_metric

        # 3,记录日志-------------------------------------------------
        info = (epoch, loss_sum/step, metric_sum/step, 
                val_loss_sum/val_step, val_metric_sum/val_step)
        dfhistory.loc[epoch-1] = info

        # 打印epoch级别日志
        print(("\nEPOCH = %d, loss = %.3f,"+ metric_name + \
              "  = %.3f, val_loss = %.3f, "+"val_"+ metric_name+" = %.3f") 
              %info)
        nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
        print("\n"+"=========="*8 + "%s"%nowtime)

    print('Finished Training...')
    return dfhistory

epochs = 3
dfhistory = train_model(model,epochs,dl_train,dl_valid,log_step_freq = 100)

Start Training...
================================================================================2020-06-26 13:10:00
[step = 100] loss: 2.298, accuracy: 0.137
[step = 200] loss: 2.288, accuracy: 0.145
[step = 300] loss: 2.278, accuracy: 0.165
[step = 400] loss: 2.265, accuracy: 0.183

EPOCH = 1, loss = 2.254,accuracy  = 0.195, val_loss = 2.158, val_accuracy = 0.301

================================================================================2020-06-26 13:11:23
[step = 100] loss: 2.127, accuracy: 0.302
[step = 200] loss: 2.080, accuracy: 0.338
[step = 300] loss: 2.025, accuracy: 0.374
[step = 400] loss: 1.957, accuracy: 0.411

EPOCH = 2, loss = 1.905,accuracy  = 0.435, val_loss = 1.469, val_accuracy = 0.710

================================================================================2020-06-26 13:12:43
[step = 100] loss: 1.435, accuracy: 0.615
[step = 200] loss: 1.324, accuracy: 0.647
[step = 300] loss: 1.221, accuracy: 0.672
[step = 400] loss: 1.132, accuracy: 0.696

EPOCH = 3, loss = 1.074,accuracy  = 0.711, val_loss = 0.582, val_accuracy = 0.878

================================================================================2020-06-26 13:13:59
Finished Training...

三,类风格

此处使用torchkeras中定义的模型接口构建模型,并调用compile方法和fit方法训练模型。

使用该形式训练模型非常简洁明了。推荐使用该形式。

class CnnModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.layers = nn.ModuleList([
            nn.Conv2d(in_channels=1,out_channels=32,kernel_size = 3),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Dropout2d(p = 0.1),
            nn.AdaptiveMaxPool2d((1,1)),
            nn.Flatten(),
            nn.Linear(64,32),
            nn.ReLU(),
            nn.Linear(32,10)]
        )
    def forward(self,x):
        for layer in self.layers:
            x = layer(x)
        return x
model = torchkeras.Model(CnnModel())
print(model)
CnnModel(
  (layers): ModuleList(
    (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Dropout2d(p=0.1, inplace=False)
    (5): AdaptiveMaxPool2d(output_size=(1, 1))
    (6): Flatten()
    (7): Linear(in_features=64, out_features=32, bias=True)
    (8): ReLU()
    (9): Linear(in_features=32, out_features=10, bias=True)
  )
)
model.summary(input_shape=(1,32,32))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 32, 30, 30]             320
         MaxPool2d-2           [-1, 32, 15, 15]               0
            Conv2d-3           [-1, 64, 11, 11]          51,264
         MaxPool2d-4             [-1, 64, 5, 5]               0
         Dropout2d-5             [-1, 64, 5, 5]               0
 AdaptiveMaxPool2d-6             [-1, 64, 1, 1]               0
           Flatten-7                   [-1, 64]               0
            Linear-8                   [-1, 32]           2,080
              ReLU-9                   [-1, 32]               0
           Linear-10                   [-1, 10]             330
================================================================
Total params: 53,994
Trainable params: 53,994
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.003906
Forward/backward pass size (MB): 0.359695
Params size (MB): 0.205971
Estimated Total Size (MB): 0.569572
----------------------------------------------------------------
from sklearn.metrics import accuracy_score

def accuracy(y_pred,y_true):
    y_pred_cls = torch.argmax(nn.Softmax(dim=1)(y_pred),dim=1).data
    return accuracy_score(y_true.numpy(),y_pred_cls.numpy())

model.compile(loss_func = nn.CrossEntropyLoss(),
             optimizer= torch.optim.Adam(model.parameters(),lr = 0.02),
             metrics_dict={"accuracy":accuracy})

dfhistory = model.fit(3,dl_train = dl_train, dl_val=dl_valid, log_step_freq=100) 

Start Training ...

================================================================================2020-06-26 13:22:39
{'step': 100, 'loss': 0.976, 'accuracy': 0.664}
{'step': 200, 'loss': 0.611, 'accuracy': 0.795}
{'step': 300, 'loss': 0.478, 'accuracy': 0.841}
{'step': 400, 'loss': 0.403, 'accuracy': 0.868}

 +-------+-------+----------+----------+--------------+
| epoch |  loss | accuracy | val_loss | val_accuracy |
+-------+-------+----------+----------+--------------+
|   1   | 0.371 |  0.879   |  0.087   |    0.972     |
+-------+-------+----------+----------+--------------+

================================================================================2020-06-26 13:23:59
{'step': 100, 'loss': 0.182, 'accuracy': 0.948}
{'step': 200, 'loss': 0.176, 'accuracy': 0.949}
{'step': 300, 'loss': 0.173, 'accuracy': 0.95}
{'step': 400, 'loss': 0.174, 'accuracy': 0.951}

 +-------+-------+----------+----------+--------------+
| epoch |  loss | accuracy | val_loss | val_accuracy |
+-------+-------+----------+----------+--------------+
|   2   | 0.175 |  0.951   |  0.152   |    0.958     |
+-------+-------+----------+----------+--------------+

================================================================================2020-06-26 13:25:22
{'step': 100, 'loss': 0.143, 'accuracy': 0.961}
{'step': 200, 'loss': 0.151, 'accuracy': 0.959}
{'step': 300, 'loss': 0.149, 'accuracy': 0.96}
{'step': 400, 'loss': 0.152, 'accuracy': 0.959}

 +-------+-------+----------+----------+--------------+
| epoch |  loss | accuracy | val_loss | val_accuracy |
+-------+-------+----------+----------+--------------+
|   3   | 0.153 |  0.959   |  0.086   |    0.975     |
+-------+-------+----------+----------+--------------+

================================================================================2020-06-26 13:26:48
Finished Training...
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-07-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 算法美食屋 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 〇,准备数据
  • 一,脚本风格
  • 二,函数风格
  • 三,类风格
相关产品与服务
容器服务
腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档