Matlab.2

clear是清空变量区

clc是清空命令行

矩阵运算

按alt键,在所有操作得地方有小方块,上面有提示,此时摁对应得按键.

就可以跳转了

按T键

X.*Y运算结果为两个矩阵的相应元素相乘,得到的结果与X和Y同维,此时X和Y也必须有相同的维数,除非其中一个为1×1矩阵,此时运算法则与X*Y相同。

矩阵的乘方运算

(1)x^Y表示,如果x为数,而Y为方阵,结果由各特征值和特征向量计算得到。

(2)X^y表示,如果X是方阵、y是一个大于1的整数,所得结果由X重复相乘y次得到;如果y不是整数,则将计算各特征值和特征向量的乘方。

(3)如果X和Y都是矩阵,或X或Y不是方阵,则会显示错误信息。

矩阵的数组乘方

X.^Y的计算结果为X中元素对Y中对应元素求幂,形成的矩阵与原矩阵维数相等,这里X和Y必须维数相等,或其中一个为数,此时运算法则等同于X^Y。

矩阵的左除运算

A\B称作矩阵A左除矩阵B,其计算结果大致与INV(A)B相同,但其算法却是不相同的。如果A是N×N的方阵,而B是N维列向量,或是由若干N维列向量组成的矩阵,则X=A\B是方程AX=B的解,X与B的大小相同,对于X和B的每个列向量,都有AX(n)=B(n),此解是由高斯消元法得到的。很显然,A\EYE(SIZE(A))=INV(A)EYE(SIZE(A)) =INV(A)。如果A是M×N的矩阵(M≠N), B是M维列向量或由若干M维列向量组成的矩阵,则X=A\B是欠定或超定方程AX=B的最小二乘解。A的有效秩L由旋转的QR分解得到,并至多在每列L个零元素上求解。

矩阵的右除运算

B/A称为矩阵A右除矩阵B,其计算结果基本与B*INV(A)相同,但其算法是不同的,可以由左除得到,即:B/A=(A'\B')'。它实际上是方程XA=B的解。

如果B和A都是矩阵,且维数相同,则B./A就是B中的元素除以A中的对应元素,所得结果矩阵的大小与B和A都相同;如果B和A中有一个为数,在结果为此数与相应的矩阵中的每个元素做运算,结果矩阵与参加运算的矩阵大小相同。

矩阵的kronecker张量积

K=KRON(A, B)返回A和B的张量积,它是一个大矩阵,取值为矩阵A和B的元素间所有的可能积。如果A是m×n矩阵,而B是p×q矩阵,则KRON(A, B)是mp×nq的矩阵。

在矩阵中,若数值为0的元素数目远远多于非0元素的数目,并且非0元素分布没有规律时,则称该矩阵为稀疏矩阵;与之相反,若非0元素数目占大多数时,则称该矩阵为稠密矩阵。定义非零元素的总数比上矩阵所有元素的总数为矩阵的稠密度。

本文分享自微信公众号 - 云深之无迹(TT1827652464)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2020-08-07

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 数学实验(预习)

    也可以用初等变换求逆矩阵,构造一个n行2n列的矩阵(A E),并进行初等变换,A编程单位矩阵的时候,E就变成了A的逆矩阵.

    云深无际
  • R 矩阵

    R 语言为线性代数的研究提供了矩阵类型,这种数据结构很类似于其它语言中的二维数组,但 R 提供了语言级的矩阵运算支持。

    云深无际
  • 网易云解锁灰色音乐

    云深无际
  • 入门 | 这是一份文科生都能看懂的线性代数简介

    选自Medium 作者:Niklas Donges 机器之心编译 参与:Tianci LIU、思源 线性代数的概念对于理解机器学习背后的原理非常重要,尤其是在深...

    机器之心
  • 这是一份文科生都能看懂的线性代数简介

    选自Medium 作者:Niklas Donges 机器之心编译 参与:Tianci LIU、思源 线性代数的概念对于理解机器学习背后的原理非常重要,尤其是在深...

    小莹莹
  • 数学实验(预习)

    也可以用初等变换求逆矩阵,构造一个n行2n列的矩阵(A E),并进行初等变换,A编程单位矩阵的时候,E就变成了A的逆矩阵.

    云深无际
  • 吹弹牛皮之Unity 引擎基础 - 矩阵(三)

    上图中展示了p,q两个基向量(单位向量)绕原点旋转后得到的新基向量p'和q'。根据勾股定理有:

    用户7698595
  • 吹弹牛皮之Unity 引擎基础 - 矩阵(一)

    沉迷于硬笔的练习偷懒了很长时间。过去的7月份仅仅更新了一篇文章,实在是深表遗憾。接着之前的向量篇小菜继续向下探索。谢谢大家长久来的鼓励和支持。

    用户7698595
  • 一起来学matlab-matlab学习笔记10 10_1一般运算符

    本文为matlab自学笔记的一部分,之所以学习matlab是因为其真的是人工智能无论是神经网络还是智能计算中日常使用的,非常重要的软件。也许最近其带来的一...

    DrawSky
  • 吴恩达机器学习笔记18-逆矩阵、矩阵转置

    “Linear Algebra review(optional)——Inverse and transpose”

    讲编程的高老师

扫码关注云+社区

领取腾讯云代金券