前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >35.opengl PBR-光照

35.opengl PBR-光照

作者头像
公号sumsmile
发布2020-08-28 09:36:04
5600
发布2020-08-28 09:36:04
举报
文章被收录于专栏:音视频技术学习笔记

这一章节就是把PBR-理论用代码实现一遍,其中球体的绘制参考一章:opengl-球体的绘制

回顾上一章节提到的反射方程:

按照这个方程实现着色器里的逻辑,公式的推导需要些耐心。可以暂时先套用,熟练用起来,回头再慢慢理解。

模拟了球体渲染的过程:

代码:

1.1.pbr.vs

代码语言:javascript
复制
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCoords;
layout (location = 2) in vec3 aNormal;

out vec2 TexCoords;
out vec3 WorldPos;
out vec3 Normal;

uniform mat4 projection;
uniform mat4 view;
uniform mat4 model;

void main()
{
    TexCoords = aTexCoords;
    WorldPos = vec3(model * vec4(aPos, 1.0));
    Normal = mat3(model) * aNormal;

    gl_Position =  projection * view * vec4(WorldPos, 1.0);
}

1.1.pbr.fs

代码语言:javascript
复制
#version 330 core
out vec4 FragColor;
in vec2 TexCoords;
in vec3 WorldPos;
in vec3 Normal;

// material parameters
uniform sampler2D albedoMap;
uniform sampler2D normalMap;
uniform sampler2D metallicMap;
uniform sampler2D roughnessMap;
uniform sampler2D aoMap;

// lights
uniform vec3 lightPositions[4];
uniform vec3 lightColors[4];

uniform vec3 camPos;

const float PI = 3.14159265359;
// ----------------------------------------------------------------------------
// Easy trick to get tangent-normals to world-space to keep PBR code simplified.
// Don't worry if you don't get what's going on; you generally want to do normal
// mapping the usual way for performance anways; I do plan make a note of this
// technique somewhere later in the normal mapping tutorial.
vec3 getNormalFromMap()
{
    vec3 tangentNormal = texture(normalMap, TexCoords).xyz * 2.0 - 1.0;

    vec3 Q1  = dFdx(WorldPos);
    vec3 Q2  = dFdy(WorldPos);
    vec2 st1 = dFdx(TexCoords);
    vec2 st2 = dFdy(TexCoords);

    vec3 N   = normalize(Normal);
    vec3 T  = normalize(Q1*st2.t - Q2*st1.t);
    vec3 B  = -normalize(cross(N, T));
    mat3 TBN = mat3(T, B, N);

    return normalize(TBN * tangentNormal);
}
// ----------------------------------------------------------------------------
float DistributionGGX(vec3 N, vec3 H, float roughness)
{
    float a = roughness*roughness;
    float a2 = a*a;
    float NdotH = max(dot(N, H), 0.0);
    float NdotH2 = NdotH*NdotH;

    float nom   = a2;
    float denom = (NdotH2 * (a2 - 1.0) + 1.0);
    denom = PI * denom * denom;

    return nom / denom;
}
// ----------------------------------------------------------------------------
float GeometrySchlickGGX(float NdotV, float roughness)
{
    float r = (roughness + 1.0);
    float k = (r*r) / 8.0;

    float nom   = NdotV;
    float denom = NdotV * (1.0 - k) + k;

    return nom / denom;
}
// ----------------------------------------------------------------------------
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
    float NdotV = max(dot(N, V), 0.0);
    float NdotL = max(dot(N, L), 0.0);
    float ggx2 = GeometrySchlickGGX(NdotV, roughness);
    float ggx1 = GeometrySchlickGGX(NdotL, roughness);

    return ggx1 * ggx2;
}
// ----------------------------------------------------------------------------
vec3 fresnelSchlick(float cosTheta, vec3 F0)
{
    return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
}
// ----------------------------------------------------------------------------
void main()
{
    vec3 albedo     = pow(texture(albedoMap, TexCoords).rgb, vec3(2.2));
    float metallic  = texture(metallicMap, TexCoords).r;
    float roughness = texture(roughnessMap, TexCoords).r;
    float ao        = texture(aoMap, TexCoords).r;

    vec3 N = getNormalFromMap();
    vec3 V = normalize(camPos - WorldPos);

    // calculate reflectance at normal incidence; if dia-electric (like plastic) use F0
    // of 0.04 and if it's a metal, use the albedo color as F0 (metallic workflow)
    vec3 F0 = vec3(0.04);
    F0 = mix(F0, albedo, metallic);

    // reflectance equation
    vec3 Lo = vec3(0.0);
    for(int i = 0; i < 4; ++i)
    {
        // calculate per-light radiance
        vec3 L = normalize(lightPositions[i] - WorldPos);
        vec3 H = normalize(V + L);
        float distance = length(lightPositions[i] - WorldPos);
        float attenuation = 1.0 / (distance * distance);
        vec3 radiance = lightColors[i] * attenuation;

        // Cook-Torrance BRDF
        float NDF = DistributionGGX(N, H, roughness);
        float G   = GeometrySmith(N, V, L, roughness);
        vec3 F    = fresnelSchlick(max(dot(H, V), 0.0), F0);
           
        vec3 nominator    = NDF * G * F;
        float denominator = 4 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.001; // 0.001 to prevent divide by zero.
        vec3 specular = nominator / denominator;
        
        // kS is equal to Fresnel
        vec3 kS = F;
        // for energy conservation, the diffuse and specular light can't
        // be above 1.0 (unless the surface emits light); to preserve this
        // relationship the diffuse component (kD) should equal 1.0 - kS.
        vec3 kD = vec3(1.0) - kS;
        // multiply kD by the inverse metalness such that only non-metals
        // have diffuse lighting, or a linear blend if partly metal (pure metals
        // have no diffuse light).
        kD *= 1.0 - metallic;

        // scale light by NdotL
        float NdotL = max(dot(N, L), 0.0);

        // add to outgoing radiance Lo
        Lo += (kD * albedo / PI + specular) * radiance * NdotL;  // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again
    }
    
    // ambient lighting (note that the next IBL tutorial will replace
    // this ambient lighting with environment lighting).
    vec3 ambient = vec3(0.03) * albedo * ao;
    
    vec3 color = ambient + Lo;

    // HDR tonemapping
    color = color / (color + vec3(1.0));
    // gamma correct
    color = pow(color, vec3(1.0/2.2));

    FragColor = vec4(color, 1.0);
}

主程序main.cpp

代码语言:javascript
复制
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

#include "Shader.h"
#include "camera.h"
#include "model.h"

#include <iostream>
#include <random>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);
unsigned int loadTexture(const char *path);
unsigned int loadCubemap(vector<std::string> faces);
void renderScene (const Shader &shader);
void renderCube();
void RenderQuad();
void renderSphere();

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

bool blinn = false;
bool blinnKeyPressed = false;
bool gammaEnabled = true;
bool gammaKeyPressed = false;
bool bloom = true;
bool hdr = true; //change with 'space'
float exposure = 1.0f; // change with Q and E

// camera
Camera camera(glm::vec3(0.0f, 0.0f, 5.0f));
float lastX = (float)SCR_WIDTH / 2.0;
float lastY = (float)SCR_HEIGHT / 2.0;
bool firstMouse = true;

// timing
float deltaTime = 0.0f;
float lastFrame = 0.0f;

unsigned int draw_mode = 1;

float lerp(float a, float b, float f)
{
    return a + f * (b - a);
}

int main()
{
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
    
#ifdef __APPLE__
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
    
    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "天哥学opengl", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
    glfwSetCursorPosCallback(window, mouse_callback);
    glfwSetScrollCallback(window, scroll_callback);
    
    // tell GLFW to capture our mouse
    //    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
    
    // glad: load all OpenGL function pointers
    // ---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }
    
//    glPolygonMode(GL_FRONT_AND_BACK ,GL_LINE );
    
    // configure global opengl state
    // -----------------------------
    glEnable(GL_DEPTH_TEST);
    
    // build and compile shaders
    // -------------------------
    Shader shader("1.1.pbr.vs", "1.1.pbr.fs");
    
    shader.use();
    shader.setVec3("albedo", 0.5f, 0.0f, 0.0f);
    shader.setFloat("ao", 1.0f);
    
    // lights
    // ------
    glm::vec3 lightPositions[] = {
        glm::vec3(-10.0f,  10.0f, 10.0f),
        glm::vec3( 10.0f,  10.0f, 10.0f),
        glm::vec3(-10.0f, -10.0f, 10.0f),
        glm::vec3( 10.0f, -10.0f, 10.0f),
    };
    glm::vec3 lightColors[] = {
        glm::vec3(300.0f, 300.0f, 300.0f),
        glm::vec3(300.0f, 300.0f, 300.0f),
        glm::vec3(300.0f, 300.0f, 300.0f),
        glm::vec3(300.0f, 300.0f, 300.0f)
    };
    int nrRows    = 7;
    int nrColumns = 7;
    float spacing = 2.5;
    
    // initialize static shader uniforms before rendering
    // --------------------------------------------------
    glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
    shader.use();
    shader.setMat4("projection", projection);
    
    // load PBR material textures
       // --------------------------
   unsigned int albedo    = loadTexture("resource/pbr/albedo.png");
   unsigned int normal    = loadTexture("resource/pbr/normal.png");
   unsigned int metallic  = loadTexture("resource/pbr/metallic.png");
   unsigned int roughness = loadTexture("resource/pbr/roughness.png");
   unsigned int ao        = loadTexture("resource/pbr/ao.png");
    
    glActiveTexture(GL_TEXTURE0);
    glBindTexture(GL_TEXTURE_2D, albedo);
    glActiveTexture(GL_TEXTURE1);
    glBindTexture(GL_TEXTURE_2D, normal);
    glActiveTexture(GL_TEXTURE2);
    glBindTexture(GL_TEXTURE_2D, metallic);
    glActiveTexture(GL_TEXTURE3);
    glBindTexture(GL_TEXTURE_2D, roughness);
    glActiveTexture(GL_TEXTURE4);
    glBindTexture(GL_TEXTURE_2D, ao);
    // render loop
    // -----------
    while (!glfwWindowShouldClose(window))
    {
        // per-frame time logic
        // --------------------
        float currentFrame = glfwGetTime();
        deltaTime = currentFrame - lastFrame;
        lastFrame = currentFrame;
        
        // input
        // -----
        processInput(window);
        
        // render
        // ------
        glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
        
        shader.use();
        glm::mat4 view = camera.GetViewMatrix();
        shader.setMat4("view", view);
        shader.setVec3("camPos", camera.Position);
        
        // render rows*column number of spheres with varying metallic/roughness values scaled by rows and columns respectively
        glm::mat4 model = glm::mat4(1.0f);
        for (int row = 0; row < nrRows; ++row)
        {
            shader.setFloat("metallic", (float)row / (float)nrRows);
            for (int col = 0; col < nrColumns; ++col)
            {
                // we clamp the roughness to 0.025 - 1.0 as perfectly smooth surfaces (roughness of 0.0) tend to look a bit off
                // on direct lighting.
                shader.setFloat("roughness", glm::clamp((float)col / (float)nrColumns, 0.05f, 1.0f));
                
                model = glm::mat4(1.0f);
                model = glm::translate(model, glm::vec3(
                                                        (col - (nrColumns / 2)) * spacing,
                                                        (row - (nrRows / 2)) * spacing,
                                                        0.0f
                                                        ));
                shader.setMat4("model", model);
                renderSphere();
            }
        }
        
        // render light source (simply re-render sphere at light positions)
        // this looks a bit off as we use the same shader, but it'll make their positions obvious and
        // keeps the codeprint small.
        for (unsigned int i = 0; i < sizeof(lightPositions) / sizeof(lightPositions[0]); ++i)
        {
            glm::vec3 newPos = lightPositions[i] + glm::vec3(sin(glfwGetTime() * 5.0) * 5.0, 0.0, 0.0);
            newPos = lightPositions[i];
            shader.setVec3("lightPositions[" + std::to_string(i) + "]", newPos);
            shader.setVec3("lightColors[" + std::to_string(i) + "]", lightColors[i]);
            
            model = glm::mat4(1.0f);
            model = glm::translate(model, newPos);
            model = glm::scale(model, glm::vec3(0.5f));
            shader.setMat4("model", model);
            renderSphere();
        }
        
        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);
        glfwPollEvents();
    }
    
    // glfw: terminate, clearing all previously allocated GLFW resources.
    // ------------------------------------------------------------------
    glfwTerminate();
    return 0;
}

// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------

bool startRecord = false;

void processInput(GLFWwindow *window)
{
    if (glfwGetKey(window, GLFW_KEY_1) == GLFW_PRESS) {
        draw_mode = 1;
    }
    if (glfwGetKey(window, GLFW_KEY_2) == GLFW_PRESS) {
        draw_mode = 2;
    }
    if (glfwGetKey(window, GLFW_KEY_3) == GLFW_PRESS) {
        draw_mode = 3;
    }
    if (glfwGetKey(window, GLFW_KEY_4) == GLFW_PRESS) {
        draw_mode = 4;
    }
    
    if (glfwGetKey(window, GLFW_KEY_B) == GLFW_PRESS && !gammaKeyPressed)
    {
        gammaEnabled = !gammaEnabled;
        gammaKeyPressed = true;
    }
    if (glfwGetKey(window, GLFW_KEY_B) == GLFW_RELEASE)
    {
        gammaKeyPressed = false;
    }
    if (glfwGetKey(window, GLFW_KEY_Y))
    {
        std::cout << "Y" << std::endl;
        startRecord = true;
        firstMouse = true;
    }
    
    if (glfwGetKey(window, GLFW_KEY_N))
    {
        std::cout << "N" << std::endl;
        
        startRecord = false;
    }
    
    if (startRecord) {
        return;
    }
    
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);
    
    if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
        camera.ProcessKeyboard(FORWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
        camera.ProcessKeyboard(BACKWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
        camera.ProcessKeyboard(LEFT, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
        camera.ProcessKeyboard(RIGHT, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_Q) == GLFW_PRESS)
        exposure -= 0.5 * deltaTime;
    if (glfwGetKey(window, GLFW_KEY_E) == GLFW_PRESS)
        exposure += 0.5 * deltaTime;
    
    if (glfwGetKey(window, GLFW_KEY_SPACE) == GLFW_PRESS && !gammaKeyPressed)
    {
        hdr = !hdr;
        gammaKeyPressed = true;
    }
    if (glfwGetKey(window, GLFW_KEY_SPACE) == GLFW_RELEASE)
    {
        gammaKeyPressed = false;
    }
}

// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    // make sure the viewport matches the new window dimensions; note that width and
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}

// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
    //    std::cout << "xpos : " << xpos << std::endl;
    //    std::cout << "ypos : " << ypos << std::endl;
    
    if (startRecord) {
        return;
    }
    
    if (firstMouse)
    {
        lastX = xpos;
        lastY = ypos;
        firstMouse = false;
    }
    
    float xoffset = xpos - lastX;
    float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top
    
    lastX = xpos;
    lastY = ypos;
    
    //    std::cout << "xoffset : " << xoffset << std::endl;
    //    std::cout << "yoffset : " << yoffset << std::endl;
    
    camera.ProcessMouseMovement(xoffset, yoffset);
}

// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
    camera.ProcessMouseScroll(yoffset);
}

// utility function for loading a 2D texture from file
// ---------------------------------------------------
unsigned int loadTexture(char const * path)
{
    unsigned int textureID;
    glGenTextures(1, &textureID);
    
    int width, height, nrComponents;
    unsigned char *data = stbi_load(path, &width, &height, &nrComponents, 0);
    if (data)
    {
        GLenum format;
        if (nrComponents == 1)
            format = GL_RED;
        else if (nrComponents == 3)
            format = GL_RGB;
        else if (nrComponents == 4)
            format = GL_RGBA;
        
        glBindTexture(GL_TEXTURE_2D, textureID);
        glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
        glGenerateMipmap(GL_TEXTURE_2D);
        
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
        
        stbi_image_free(data);
    }
    else
    {
        std::cout << "Texture failed to load at path: " << path << std::endl;
        stbi_image_free(data);
    }
    
    return textureID;
}


unsigned int loadCubemap(vector<std::string> faces)
{
    unsigned int textureID;
    glGenTextures(1, &textureID);
    glBindTexture(GL_TEXTURE_CUBE_MAP, textureID);
    
    int width, height, nrChannels;
    for (unsigned int i = 0; i < faces.size(); i++) {
        unsigned char *data = stbi_load(faces[i].c_str(), &width, &height, &nrChannels, 0);
        
        if (data)
        {
            glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
            stbi_image_free(data);
        }
        else
        {
            std::cout << "Cubemap texture failed to load at path: " << faces[i] << std::endl;
            stbi_image_free(data);
        }
        glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
    }
    
    return textureID;
}

void renderScene(const Shader &shader)
{
    // room cube
    glm::mat4 model = glm::mat4(1.0f);
    model = glm::scale(model, glm::vec3(5.0f));
    shader.setMat4("model", model);
    glDisable(GL_CULL_FACE); // note that we disable culling here since we render 'inside' the cube instead of the usual 'outside' which throws off the normal culling methods.
    shader.setInt("reverse_normals", 1); // A small little hack to invert normals when drawing cube from the inside so lighting still works.
    renderCube();
    shader.setInt("reverse_normals", 0); // and of course disable it
    glEnable(GL_CULL_FACE);
    // cubes
    model = glm::mat4(1.0f);
    model = glm::translate(model, glm::vec3(4.0f, -3.5f, 0.0));
    model = glm::scale(model, glm::vec3(0.5f));
    shader.setMat4("model", model);
    renderCube();
    model = glm::mat4(1.0f);
    model = glm::translate(model, glm::vec3(2.0f, 3.0f, 1.0));
    model = glm::scale(model, glm::vec3(0.75f));
    shader.setMat4("model", model);
    renderCube();
    model = glm::mat4(1.0f);
    model = glm::translate(model, glm::vec3(-3.0f, -1.0f, 0.0));
    model = glm::scale(model, glm::vec3(0.5f));
    shader.setMat4("model", model);
    renderCube();
    model = glm::mat4(1.0f);
    model = glm::translate(model, glm::vec3(-1.5f, 1.0f, 1.5));
    model = glm::scale(model, glm::vec3(0.5f));
    shader.setMat4("model", model);
    renderCube();
    model = glm::mat4(1.0f);
    model = glm::translate(model, glm::vec3(-1.5f, 2.0f, -3.0));
    model = glm::rotate(model, glm::radians(60.0f), glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
    model = glm::scale(model, glm::vec3(0.75f));
    shader.setMat4("model", model);
    renderCube();
}


// renderCube() renders a 1x1 3D cube in NDC.
// -------------------------------------------------
unsigned int cubeVAO = 0;
unsigned int cubeVBO = 0;
void renderCube()
{
    // initialize (if necessary)
    if (cubeVAO == 0)
    {
        float vertices[] = {
            // back face
            -1.0f, -1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
            1.0f,  1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 1.0f, 1.0f, // top-right
            1.0f, -1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 1.0f, 0.0f, // bottom-right
            1.0f,  1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 1.0f, 1.0f, // top-right
            -1.0f, -1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
            -1.0f,  1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 0.0f, 1.0f, // top-left
            // front face
            -1.0f, -1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 0.0f, 0.0f, // bottom-left
            1.0f, -1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 1.0f, 0.0f, // bottom-right
            1.0f,  1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 1.0f, 1.0f, // top-right
            1.0f,  1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 1.0f, 1.0f, // top-right
            -1.0f,  1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 0.0f, 1.0f, // top-left
            -1.0f, -1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 0.0f, 0.0f, // bottom-left
            // left face
            -1.0f,  1.0f,  1.0f, -1.0f,  0.0f,  0.0f, 1.0f, 0.0f, // top-right
            -1.0f,  1.0f, -1.0f, -1.0f,  0.0f,  0.0f, 1.0f, 1.0f, // top-left
            -1.0f, -1.0f, -1.0f, -1.0f,  0.0f,  0.0f, 0.0f, 1.0f, // bottom-left
            -1.0f, -1.0f, -1.0f, -1.0f,  0.0f,  0.0f, 0.0f, 1.0f, // bottom-left
            -1.0f, -1.0f,  1.0f, -1.0f,  0.0f,  0.0f, 0.0f, 0.0f, // bottom-right
            -1.0f,  1.0f,  1.0f, -1.0f,  0.0f,  0.0f, 1.0f, 0.0f, // top-right
            // right face
            1.0f,  1.0f,  1.0f,  1.0f,  0.0f,  0.0f, 1.0f, 0.0f, // top-left
            1.0f, -1.0f, -1.0f,  1.0f,  0.0f,  0.0f, 0.0f, 1.0f, // bottom-right
            1.0f,  1.0f, -1.0f,  1.0f,  0.0f,  0.0f, 1.0f, 1.0f, // top-right
            1.0f, -1.0f, -1.0f,  1.0f,  0.0f,  0.0f, 0.0f, 1.0f, // bottom-right
            1.0f,  1.0f,  1.0f,  1.0f,  0.0f,  0.0f, 1.0f, 0.0f, // top-left
            1.0f, -1.0f,  1.0f,  1.0f,  0.0f,  0.0f, 0.0f, 0.0f, // bottom-left
            // bottom face
            -1.0f, -1.0f, -1.0f,  0.0f, -1.0f,  0.0f, 0.0f, 1.0f, // top-right
            1.0f, -1.0f, -1.0f,  0.0f, -1.0f,  0.0f, 1.0f, 1.0f, // top-left
            1.0f, -1.0f,  1.0f,  0.0f, -1.0f,  0.0f, 1.0f, 0.0f, // bottom-left
            1.0f, -1.0f,  1.0f,  0.0f, -1.0f,  0.0f, 1.0f, 0.0f, // bottom-left
            -1.0f, -1.0f,  1.0f,  0.0f, -1.0f,  0.0f, 0.0f, 0.0f, // bottom-right
            -1.0f, -1.0f, -1.0f,  0.0f, -1.0f,  0.0f, 0.0f, 1.0f, // top-right
            // top face
            -1.0f,  1.0f, -1.0f,  0.0f,  1.0f,  0.0f, 0.0f, 1.0f, // top-left
            1.0f,  1.0f , 1.0f,  0.0f,  1.0f,  0.0f, 1.0f, 0.0f, // bottom-right
            1.0f,  1.0f, -1.0f,  0.0f,  1.0f,  0.0f, 1.0f, 1.0f, // top-right
            1.0f,  1.0f,  1.0f,  0.0f,  1.0f,  0.0f, 1.0f, 0.0f, // bottom-right
            -1.0f,  1.0f, -1.0f,  0.0f,  1.0f,  0.0f, 0.0f, 1.0f, // top-left
            -1.0f,  1.0f,  1.0f,  0.0f,  1.0f,  0.0f, 0.0f, 0.0f  // bottom-left
        };
        glGenVertexArrays(1, &cubeVAO);
        glGenBuffers(1, &cubeVBO);
        // fill buffer
        glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
        glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
        // link vertex attributes
        glBindVertexArray(cubeVAO);
        glEnableVertexAttribArray(0);
        glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0);
        glEnableVertexAttribArray(1);
        glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3 * sizeof(float)));
        glEnableVertexAttribArray(2);
        glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));
        glBindBuffer(GL_ARRAY_BUFFER, 0);
        glBindVertexArray(0);
    }
    glBindVertexArray(cubeVAO);
    glDrawArrays(GL_TRIANGLES, 0, 36);
    glBindVertexArray(0);
}

// RenderQuad() Renders a 1x1 quad in NDC
unsigned int quadVAO = 0;
unsigned int quadVBO;

void RenderQuad()
{
    if (quadVAO == 0)
    {
        GLfloat quadVertices[] = {
            // Positions        // Texture Coords
            -1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
            -1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
            1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
            1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
        };
        // Setup plane VAO
        glGenVertexArrays(1, &quadVAO);
        glGenBuffers(1, &quadVBO);
        glBindVertexArray(quadVAO);
        glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
        glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
        glEnableVertexAttribArray(0);
        glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)0);
        glEnableVertexAttribArray(1);
        glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
    }
    glBindVertexArray(quadVAO);
    glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
    glBindVertexArray(0);
}

unsigned int sphereVAO = 0;
unsigned int indexCount;
int renderTime = 1;
float _lastFrame = 0;
float _currentFrame = 0;
float duration = 100000;
void renderSphere()
{
    if (sphereVAO == 0)
    {
        glGenVertexArrays(1, &sphereVAO);

        unsigned int vbo, ebo;
        glGenBuffers(1, &vbo);
        glGenBuffers(1, &ebo);

        std::vector<glm::vec3> positions;
        std::vector<glm::vec2> uv;
        std::vector<glm::vec3> normals;
        std::vector<unsigned int> indices;

        const unsigned int X_SEGMENTS = 64;
        const unsigned int Y_SEGMENTS = 64;
        const float PI = 3.14159265359;
        for (unsigned int y = 0; y <= Y_SEGMENTS; ++y)
        {
            for (unsigned int x = 0; x <= X_SEGMENTS; ++x)
            {
                float xSegment = (float)x / (float)X_SEGMENTS;
                float ySegment = (float)y / (float)Y_SEGMENTS;
                float xPos = std::cos(xSegment * 2.0f * PI) * std::sin(ySegment * PI);
                float yPos = std::cos(ySegment * PI);
                float zPos = std::sin(xSegment * 2.0f * PI) * std::sin(ySegment * PI);

                positions.push_back(glm::vec3(xPos, yPos, zPos));
                uv.push_back(glm::vec2(xSegment, ySegment));
                normals.push_back(glm::vec3(xPos, yPos, zPos));
            }
        }

        bool oddRow = false;
        for (unsigned int y = 0; y < Y_SEGMENTS; ++y)
        {
            if (!oddRow) // even rows: y == 0, y == 2; and so on
            {
                for (unsigned int x = 0; x <= X_SEGMENTS; ++x)
                {
                    indices.push_back(y       * (X_SEGMENTS + 1) + x);
                    indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
                }
            }
            else
            {
                for (int x = X_SEGMENTS; x >= 0; --x)
                {
                    indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
                    indices.push_back(y       * (X_SEGMENTS + 1) + x);
                }
            }
            oddRow = !oddRow;
        }
        indexCount = indices.size();

        std::vector<float> data;
        for (unsigned int i = 0; i < positions.size(); ++i)
        {
            data.push_back(positions[i].x);
            data.push_back(positions[i].y);
            data.push_back(positions[i].z);
            if (uv.size() > 0)
            {
                data.push_back(uv[i].x);
                data.push_back(uv[i].y);
            }
            if (normals.size() > 0)
            {
                data.push_back(normals[i].x);
                data.push_back(normals[i].y);
                data.push_back(normals[i].z);
            }
        }
        glBindVertexArray(sphereVAO);
        glBindBuffer(GL_ARRAY_BUFFER, vbo);
        glBufferData(GL_ARRAY_BUFFER, data.size() * sizeof(float), &data[0], GL_STATIC_DRAW);
        glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
        glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW);
        float stride = (3 + 2 + 3) * sizeof(float);
        glEnableVertexAttribArray(0);
        glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, stride, (void*)0);
        glEnableVertexAttribArray(1);
        glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, stride, (void*)(3 * sizeof(float)));
        glEnableVertexAttribArray(2);
        glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, stride, (void*)(5 * sizeof(float)));
    }

    glBindVertexArray(sphereVAO);
    int pointNumber = renderTime * 3;
    if (pointNumber >= indexCount) {
        pointNumber = indexCount;
        glPolygonMode(GL_FRONT_AND_BACK ,GL_FILL);
    }
    glDrawElements(GL_TRIANGLE_STRIP, pointNumber, GL_UNSIGNED_INT, 0);
    std::cout << "pointNumber: " << pointNumber << std::endl;

    _currentFrame = glfwGetTime();
    std::cout << "_currentFrame: " << _currentFrame << std::endl;
    std::cout << "_lastFrame: " << _lastFrame << std::endl;
    std::cout << "_currentFrame - _lastFrame: " << _currentFrame - _lastFrame << std::endl;

    std::cout << "duration: " << duration << std::endl;

    if (_currentFrame - _lastFrame > 0.009f) {
        if (duration >= 0) {
            duration -= (_currentFrame - _lastFrame);
            return;
        }
        renderTime++;
        _lastFrame = _currentFrame;
    }
}
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档