布隆过滤器本质上就是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”。
相比于传统的 List、Set、Map 等数据结构,它更高效、占用空间更少,但是缺点是其返回的结果是概率性的,而不是确切的。
我们经常会把一部分数据放在Redis中缓存,比如文章详情。
这样有查询请求进来,我们可以根据文章Id直接去缓存中取数据,而不用读取数据库,这是提升性能最简单,最普遍,也是最有效的做法。
一般的查询请求流程是这样的:先查缓存(有缓存的话直接返回)-> 如果缓存中没有,再去数据库查询(把数据库取出来的数据放入缓存)-> 返回数据。
好像一切看起来很美好。
问题:如果现在有大量请求进来,而且都在请求一个不存在的文章Id,那将会发生什么?
既然文章Id都不存在,那么肯定没有对应的缓存信息,没有缓存,那么大量的请求都堆积到数据库,数据库的压力一下子就上来了,甚至可能把数据库打满跑死。
查询近1亿用户手机号系统中是否存在其交易信息,如何做到判断的准确快速?
方案一:通过数据库查询
查询压力好像有点大,做不到高效而且还存在数据库服务被压垮的风险。
方案二:通过Redis缓存(存在交易单的用户手机号放入Set)
可能会产生大Key造成慢查询,同时内存资源会造成浪费。
以上例子有一个共同的特点: 如何判断一个元素是否存在一个集合中。这些问题用其他方式可能都会解决,但“布隆过滤器”就能够有效的解决。
哈希函数的概念:将任意大小的数据转换成特定大小的数据的函数,转换后的数据称为哈希值或哈希编码。示意图如下所示:
可以明显的看到,原始数据经过哈希函数的映射后成为了一个个的哈希编码,数据得到压缩。哈希函数是实现哈希表和布隆过滤器的基础。
布隆过滤器是一个 bit 向量或者说 bit 数组,示意图如下所示:
布隆过滤器(Bloom Filter)的核心实现是一个超大的位数组和几个哈希函数。
假设我们要将x、y、z三元素放入布隆过滤器再去检索w,示意图如下所示:
具体的操作流程如下:
假设集合里面有3个元素{x, y, z},哈希函数的个数为3。将位数组进行初始化,将里面每个位都设置为0。
注意:此处不能判断该元素是否一定存在集合中,可能存在一定的误判率。 假设某个元素通过映射对应下标为4,5,6 这3个点。虽然这3个点都为1,但是很明显这3个点是不同元素经过哈希得到的位置,因此这种情况说明元素虽然不在集合中,也可能对应的都是1,由此推断出误判率存在的可能性。
语法:[bf.add key options]
127.0.0.1:6379> bf.add users 15012345678
(integer) 1
4.2 查询元素
语法:[bf.exists key options]
127.0.0.1:6379> bf.exists users 15012345678
(integer) 1
127.0.0.1:6379> bf.exists users 15012345679
(integer) 0
传统的布隆过滤器并不支持删除操作。
但是名为 Counting Bloom Filter 的变种可以用来测试元素计数个数是否绝对小于某个阈值,它支持元素删除。大家感兴趣可自行检索了解~
常见的使用常见有,利用布隆过滤器减少磁盘 IO 或者网络请求,因为一旦一个值必定不存在的话,我们可以不用进行后续更昂贵的查询请求。
既然我们使用布隆过滤器来加速查找和判断是否存在,那么性能很低的哈希函数不是个好选择,推荐 MurmurHash、Fnv 这些。
假如布隆过滤器长度过小的话,那很快所有的 bit 位均会被置为 1,那么查询任何值都会返回“可能存在”,起不到过滤的目的了。布隆过滤器的长度会直接影响误报率,布隆过滤器越长其误报率越小。
哈希函数的个数也需要权衡,个数越多则布隆过滤器 bit 位置为 1 的速度越快,且布隆过滤器的效率越低;但是如果太少的话,那我们的误报率会变高。
往期热文推荐:
「技术架构精进」专注架构研究,技术分享
Thanks for reading!