前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >基于OpenCV 的车牌识别

基于OpenCV 的车牌识别

作者头像
小白学视觉
发布2020-09-04 10:30:02
7K0
发布2020-09-04 10:30:02
举报

车牌识别是一种图像处理技术,用于识别不同车辆。这项技术被广泛用于各种安全检测中。现在让我一起基于OpenCV编写Python代码来完成这一任务。

车牌识别的相关步骤

1.车牌检测:第一步是从汽车上检测车牌所在位置。我们将使用OpenCV中矩形的轮廓检测来寻找车牌。如果我们知道车牌的确切尺寸,颜色和大致位置,则可以提高准确性。通常,也会将根据摄像机的位置和该特定国家/地区所使用的车牌类型来训练检测算法。但是图像可能并没有汽车的存在,在这种情况下我们将先进行汽车的,然后是车牌。

2.字符分割:检测到车牌后,我们必须将其裁剪并保存为新图像。同样,这可以使用OpenCV来完成。

3. 字符识别:现在,我们在上一步中获得的新图像肯定可以写上一些字符(数字/字母)。因此,我们可以对其执行OCR(光学字符识别)以检测数字。

1.车牌检测

让我们以汽车的样本图像为例,首先检测该汽车上的车牌。然后,我们还将使用相同的图像进行字符分割和字符识别。如果您想直接进入代码而无需解释,则可以向下滚动至此页面的底部,提供完整的代码,或访问以下链接。https://github.com/GeekyPRAVEE/OpenCV-Projects/blob/master/LicensePlateRecoginition.ipynb

在次使用的测试图像如下所示。

图片来源链接:https : //rb.gy/lxmiuv

第1步: 将图像调整为所需大小,然后将其灰度。相同的代码如下

代码语言:javascript
复制
img = cv2.resize(img, (620,480) )
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #convert to grey scale

调整大小后,可以避免使用较大分辨率的图像而出现的以下问题,但是我们要确保在调整大小后,车号牌仍保留在框架中。在处理图像时如果不再需要处理颜色细节,那么灰度变化就必不可少,这加快了其他后续处理的速度。完成此步骤后,图像将像这样被转换

步骤2:每张图片都会包含有用和无用的信息,在这种情况下,对于我们来说,只有牌照是有用的信息,其余的对于我们的程序几乎是无用的。这种无用的信息称为噪声。通常,使用双边滤波(模糊)会从图像中删除不需要的细节

代码语言:javascript
复制
gray = cv2.bilateralFilter(gray, 13, 15, 15)

语法为 destination_image = cv2.bilateralFilter(source_image, diameter of pixel, sigmaColor, sigmaSpace)。我们也可以将sigma颜色和sigma空间从15增加到更高的值,以模糊掉更多的背景信息,但请注意不要使有用的部分模糊。输出图像如下所示可以看到该图像中的背景细节(树木和建筑物)模糊了。这样,我们可以避免程序处理这些区域。

步骤3:下一步是我们执行边缘检测的有趣步骤。有很多方法可以做到,最简单和流行的方法是使用OpenCV中canny edge方法。执行相同操作的行如下所示

代码语言:javascript
复制
edged = cv2.Canny(gray, 30, 200) #Perform Edge detection

语法为destination_image = cv2.Canny(source_image,thresholdValue 1,thresholdValue 2)。阈值谷1和阈值2是最小和最大阈值。仅显示强度梯度大于最小阈值且小于最大阈值的边缘。结果图像如下所示

步骤4:现在我们可以开始在图像上寻找轮廓

代码语言:javascript
复制
contours=cv2.findContours(edged.copy(),cv2.RETR_TREE,
                                            cv2.CHAIN_APPROX_SIMPLE)
contours = imutils.grab_contours(contours)
contours = sorted(contours,key=cv2.contourArea, reverse = True)[:10]
screenCnt = None

一旦检测到计数器,我们就将它们从大到小进行排序,并只考虑前10个结果而忽略其他结果。在我们的图像中,计数器可以是具有闭合表面的任何事物,但是在所有获得的结果中,牌照号码也将存在,因为它也是闭合表面。

为了过滤获得的结果中的车牌图像,我们将遍历所有结果,并检查其具有四个侧面和闭合图形的矩形轮廓。由于车牌肯定是四边形的矩形。

代码语言:javascript
复制
for c in cnts:
    # approximate the contour
    peri = cv2.arcLength(c, True)
    approx = cv2.approxPolyDP(c, 0.018 * peri, True)
    # if our approximated contour has four points, then
    # we can assume that we have found our screen
    if len(approx) == 4:
        screenCnt = approx
        break

找到正确的计数器后,我们将其保存在名为screenCnt的变量中,然后在其周围绘制一个矩形框,以确保我们已正确检测到车牌。

步骤5:现在我们知道车牌在哪里,剩下的信息对我们来说几乎没有用。因此,我们可以对整个图片进行遮罩,除了车牌所在的地方。相同的代码如下所示

代码语言:javascript
复制
# Masking the part other than the number plate
mask = np.zeros(gray.shape,np.uint8)
new_image = cv2.drawContours(mask,[screenCnt],0,255,-1,)
new_image = cv2.bitwise_and(img,img,mask=mask)

被遮罩的新图像将如下所示

2.字符分割

车牌识别的下一步是通过裁剪车牌并将其保存为新图像,将车牌从图像中分割出来然后,我们可以使用此图像来检测其中的字符。下面显示了从主图像裁剪出ROI(感兴趣区域)图像的代码

代码语言:javascript
复制
# Now crop
(x, y) = np.where(mask == 255)
(topx, topy) = (np.min(x), np.min(y))
(bottomx, bottomy) = (np.max(x), np.max(y))
Cropped = gray[topx:bottomx+1, topy:bottomy+1]

结果图像如下所示。通常添加到裁剪图像中,如果需要,我们还可以对其进行灰色处理和边缘化。这样做是为了改善下一步的字符识别。但是我发现即使使用原始图像也可以正常工作。

3.字符识别

车牌识别的最后一步是从分割的图像中实际读取车牌信息。就像前面的教程一样,我们将使用pytesseract包从图像读取字符。相同的代码如下

代码语言:javascript
复制
#Read the number plate
text = pytesseract.image_to_string(Cropped, config='--psm 11')
print("Detected license plate Number is:",text)

原始图像上印有数字“ CZ20FSE”,并且我们的程序检测到它在jupyter笔记本上打印了相同的值。

车牌识别失败案例

车牌识别的完整代码,其中包含程序和我们用来检查程序的测试图像。要记住,此方法的结果将不准确。准确度取决于图像的清晰度,方向,曝光等。为了获得更好的结果,您可以尝试同时实现机器学习算法。

这个案例中我们的程序能够正确检测车牌并进行裁剪。但是,Tesseract库无法正确识别字符。OCR已将其识别为“ MH13CD 0036”,而不是实际的“ MH 13 CD 0096”。通过使用更好的方向图像或配置Tesseract引擎,可以纠正此类问题

其他成功的例子

大多数时候,图像质量和方向都是正确的,程序能够识别车牌并从中读取编号。下面的快照显示了获得的成功结果。

完整代码

代码语言:javascript
复制
#@programming_fever
import cv2
import imutils
import numpy as np
import pytesseract
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files (x86)\Tesseract-OCR\tesseract.exe'

img = cv2.imread('D://skoda1.jpg',cv2.IMREAD_COLOR)
img = cv2.resize(img, (600,400) )

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
gray = cv2.bilateralFilter(gray, 13, 15, 15)

edged = cv2.Canny(gray, 30, 200) 
contours = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = imutils.grab_contours(contours)
contours = sorted(contours, key = cv2.contourArea, reverse = True)[:10]
screenCnt = None

for c in contours:
    
    peri = cv2.arcLength(c, True)
    approx = cv2.approxPolyDP(c, 0.018 * peri, True)
 
    if len(approx) == 4:
        screenCnt = approx
        break

if screenCnt is None:
    detected = 0
    print ("No contour detected")
else:
     detected = 1

if detected == 1:
    cv2.drawContours(img, [screenCnt], -1, (0, 0, 255), 3)

mask = np.zeros(gray.shape,np.uint8)
new_image = cv2.drawContours(mask,[screenCnt],0,255,-1,)
new_image = cv2.bitwise_and(img,img,mask=mask)

(x, y) = np.where(mask == 255)
(topx, topy) = (np.min(x), np.min(y))
(bottomx, bottomy) = (np.max(x), np.max(y))
Cropped = gray[topx:bottomx+1, topy:bottomy+1]

text = pytesseract.image_to_string(Cropped, config='--psm 11')
print("programming_fever's License Plate Recognition\n")
print("Detected license plate Number is:",text)
img = cv2.resize(img,(500,300))
Cropped = cv2.resize(Cropped,(400,200))
cv2.imshow('car',img)
cv2.imshow('Cropped',Cropped)

cv2.waitKey(0)
cv2.destroyAllWindows()

Github链接-https: //github.com/GeekyPRAVEE/OpenCV-Projects/blob/master/LicensePlateRecoginition.ipynb

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-08-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 小白学视觉 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
汽车相关识别
汽车相关识别(Vehicle Optical Character Recognition,Vehicle OCR)基于行业前沿的深度学习技术,提供驾驶证识别、行驶证识别、车牌识别、车辆 VIN 码识别等多种服务,支持将图片上的文字内容,智能识别为结构化的文本,应用于车主身份认证、ETC 出行、违章识别、停车管理等多种场景,大幅提升信息处理效率。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档