前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Keras实现将两个模型连接到一起

Keras实现将两个模型连接到一起

作者头像
砸漏
发布2020-11-02 14:25:56
1.2K0
发布2020-11-02 14:25:56
举报
文章被收录于专栏:恩蓝脚本

神经网络玩得越久就越会尝试一些网络结构上的大改动。

先说意图

有两个模型:模型A和模型B。模型A的输出可以连接B的输入。将两个小模型连接成一个大模型,A-B,既可以同时训练又可以分离训练。

流行的算法里经常有这么关系的两个模型,对GAN来说,生成器和判别器就是这样子;对VAE来说,编码器和解码器就是这样子;对目标检测网络来说,backbone和整体也是可以拆分的。所以,应用范围还是挺广的。

实现方法

首先说明,我的实现方法不一定是最佳方法。也是实在没有借鉴到比较好的方法,所以才自己手动写了一个。

第一步,我们有现成的两个模型A和B;我们想把A的输出连到B的输入,组成一个整体C。

第二步, 重构新模型C;我的方法是:读出A和B各有哪些layer,然后一层一层重新搭成C。

可以看一个自编码器的代码(本人所编写):

代码语言:javascript
复制
class AE:
 def __init__(self, dim, img_dim, batch_size):
  self.dim = dim
  self.img_dim = img_dim
  self.batch_size = batch_size
  self.encoder = self.encoder_construct()
  self.decoder = self.decoder_construct()
 
 def encoder_construct(self):
  x_in = Input(shape=(self.img_dim, self.img_dim, 3))
  x = x_in
  x = Conv2D(self.dim // 16, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(x)
  x = BatchNormalization()(x)
  x = LeakyReLU(0.2)(x)
  x = Conv2D(self.dim // 8, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(x)
  x = BatchNormalization()(x)
  x = LeakyReLU(0.2)(x)
  x = Conv2D(self.dim // 4, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(x)
  x = BatchNormalization()(x)
  x = LeakyReLU(0.2)(x)
  x = Conv2D(self.dim // 2, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(x)
  x = BatchNormalization()(x)
  x = LeakyReLU(0.2)(x)
  x = Conv2D(self.dim, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(x)
  x = BatchNormalization()(x)
  x = LeakyReLU(0.2)(x)
  x = GlobalAveragePooling2D()(x)
  encoder = Model(x_in, x)
  return encoder
 
 def decoder_construct(self):
  map_size = K.int_shape(self.encoder.layers[-2].output)[1:-1]
  # print(type(map_size))
  z_in = Input(shape=K.int_shape(self.encoder.output)[1:])
  z = z_in
  z_dim = self.dim
  z = Dense(np.prod(map_size) * z_dim)(z)
  z = Reshape(map_size + (z_dim,))(z)
  z = Conv2DTranspose(z_dim // 2, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(z)
  z = BatchNormalization()(z)
  z = Activation('relu')(z)
  z = Conv2DTranspose(z_dim // 4, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(z)
  z = BatchNormalization()(z)
  z = Activation('relu')(z)
  z = Conv2DTranspose(z_dim // 8, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(z)
  z = BatchNormalization()(z)
  z = Activation('relu')(z)
  z = Conv2DTranspose(z_dim // 16, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(z)
  z = BatchNormalization()(z)
  z = Activation('relu')(z)
  z = Conv2DTranspose(3, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(z)
  z = Activation('tanh')(z)
  decoder = Model(z_in, z)
  return decoder
 
 def build_ae(self):
  input_x = Input(shape=(self.img_dim, self.img_dim, 3))
  x = input_x
  for i in range(1, len(self.encoder.layers)):
   x = self.encoder.layers[i](x)
  for j in range(1, len(self.decoder.layers)):
   x = self.decoder.layers[j](x)
  y = x
  auto_encoder = Model(input_x, y)
  return auto_encoder

模型A就是这里的encoder,模型B就是这里的decoder。所以,连接的精髓在build_ae()函数,直接用for循环读出各层,然后一层一层重新构造新的模型,从而实现连接效果。因为keras也是基于图的框架,这个操作并不会很费时,因为没有实际地计算。

补充知识:keras得到每层的系数

使用keras搭建好一个模型,训练好,怎么得到每层的系数呢:

代码语言:javascript
复制
weights = np.array(model.get_weights())
print(weights)
print(weights[0].shape)
print(weights[1].shape)

这样系数就被存放到一个np中了。

以上这篇Keras实现将两个模型连接到一起就是小编分享给大家的全部内容了,希望能给大家一个参考。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020-09-11 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档