前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >轻松学Pytorch – 构建UNet实现道路裂纹检测

轻松学Pytorch – 构建UNet实现道路裂纹检测

作者头像
OpenCV学堂
发布2020-11-16 14:45:19
2K0
发布2020-11-16 14:45:19
举报
文章被收录于专栏:贾志刚-OpenCV学堂

大家好,我又好久没有给大家更新这个系列了,但是我内心一直没有忘记要更新pytorch初学者系列文章,今天给大家分享一下Pytorch如何构建UNet网络并实现模型训练与测试,实现一个道路裂纹检测!

数据集

CrackForest数据集,包括118张标注数据,37张验证与测试数据。数据集的目录有groundtruth、image、seg三个子目录,分别是标注数据、原始图像、分割信息。其中标注信息是matlab格式的文件,通过字典方式实现数据存储与读写,seg文件本质是text文件,按行来组织信息,前面几行是图像属性与格式化信息,data部分的格式如下:

代码语言:javascript
复制
Seg_num+空格+row_index+空格+column1+column2

  • 空格表示space,
  • seg_num值为0或者1
  • row_index表示当前行
  • column1表示开始列位置
  • column2 表示结束列位置

假设seg中描述的图像宽度为480,高度为320,表示第一行的分割信息表示如下:

代码语言:javascript
复制
0 0 0 479 表示图像第一行从列0到列479为0,黑色
1 200 141 151 表示图像中第200行中列141到151为1,白色

最终解释上述数据集生成的mask数据显示如下:大小均为(480x320)

Pytorch中定义对应数据集类的代码实现如下:

代码语言:javascript
复制
class SegmentationDataset(Dataset):
    def __init__(self, image_dir, mask_dir):
        self.images = []
        self.masks = []
        files = os.listdir(image_dir)
        sfiles = os.listdir(mask_dir)
        for i in range(len(sfiles)):
            img_file = os.path.join(image_dir, files[i])
            mask_file = os.path.join(mask_dir, sfiles[i])
            # print(img_file, mask_file)
            self.images.append(img_file)
            self.masks.append(mask_file)

    def __len__(self):
        return len(self.images)

    def num_of_samples(self):
        return len(self.images)

    def __getitem__(self, idx):
        if torch.is_tensor(idx):
            idx = idx.tolist()
            image_path = self.images[idx]
            mask_path = self.masks[idx]
        else:
            image_path = self.images[idx]
            mask_path = self.masks[idx]
        img = cv.imread(image_path, cv.IMREAD_GRAYSCALE)  # BGR order
        mask = cv.imread(mask_path, cv.IMREAD_GRAYSCALE)

        # 输入图像
        img = np.float32(img) / 255.0
        img = np.expand_dims(img, 0)

        # 目标标签0 ~ 1, 对于
        mask[mask <= 128] = 0
        mask[mask > 128] = 1
        mask = np.expand_dims(mask, 0)
        sample = {'image': torch.from_numpy(img), 'mask': torch.from_numpy(mask),}
        return sample

模型构建

UNet网络是图像语义分割网络,整个网络可以分为两个部分来解释。第一部分是编码网络,不断的降低分辨率,实现图像特征提取;第二部分是解码网络,不断提升分辨率同时尝试重建图像有用信息,最终输出结果。网络模型结构如下:

代码实现如下:

代码语言:javascript
复制

代码实现如下class UNetModel(torch.nn.Module):

    def __init__(self, in_features=1, out_features=2, init_features=32):
        super(UNetModel, self).__init__()
        features = init_features
        self.encode_layer1 = torch.nn.Sequential(
            torch.nn.Conv2d(in_channels=in_features, out_channels=features, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features),
            torch.nn.ReLU(),
            torch.nn.Conv2d(in_channels=features, out_channels=features, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features),
            torch.nn.ReLU()
        )
        self.pool1 = torch.nn.MaxPool2d(kernel_size=2, stride=2)
        self.encode_layer2 = torch.nn.Sequential(
            torch.nn.Conv2d(in_channels=features, out_channels=features*2, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features*2),
            torch.nn.ReLU(),
            torch.nn.Conv2d(in_channels=features*2, out_channels=features*2, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features * 2),
            torch.nn.ReLU()
        )
        self.pool2 = torch.nn.MaxPool2d(kernel_size=2, stride=2)
        self.encode_layer3 = torch.nn.Sequential(
            torch.nn.Conv2d(in_channels=features*2, out_channels=features*4, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features * 4),
            torch.nn.ReLU(),
            torch.nn.Conv2d(in_channels=features*4, out_channels=features*4, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features * 4),
            torch.nn.ReLU()
        )
        self.pool3 = torch.nn.MaxPool2d(kernel_size=2, stride=2)
        self.encode_layer4 = torch.nn.Sequential(
            torch.nn.Conv2d(in_channels=features*4, out_channels=features*8, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features * 8),
            torch.nn.ReLU(),
            torch.nn.Conv2d(in_channels=features*8, out_channels=features*8, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features * 8),
            torch.nn.ReLU(),
        )
        self.pool4 = torch.nn.MaxPool2d(kernel_size=2, stride=2)
        self.encode_decode_layer = torch.nn.Sequential(
            torch.nn.Conv2d(in_channels=features*8, out_channels=features*16, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features * 16),
            torch.nn.ReLU(),
            torch.nn.Conv2d(in_channels=features*16, out_channels=features*16, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features * 16),
            torch.nn.ReLU()
        )
        self.upconv4 = torch.nn.ConvTranspose2d(
            features * 16, features * 8, kernel_size=2, stride=2
        )
        self.decode_layer4 = torch.nn.Sequential(
            torch.nn.Conv2d(in_channels=features*16, out_channels=features*8, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features*8),
            torch.nn.ReLU(),
            torch.nn.Conv2d(in_channels=features*8, out_channels=features*8, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features * 8),
            torch.nn.ReLU(),
        )
        self.upconv3 = torch.nn.ConvTranspose2d(
            features * 8, features * 4, kernel_size=2, stride=2
        )
        self.decode_layer3 = torch.nn.Sequential(
            torch.nn.Conv2d(in_channels=features*8, out_channels=features*4, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features * 4),
            torch.nn.ReLU(),
            torch.nn.Conv2d(in_channels=features*4, out_channels=features*4, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features * 4),
            torch.nn.ReLU()
        )
        self.upconv2 = torch.nn.ConvTranspose2d(
            features * 4, features * 2, kernel_size=2, stride=2
        )
        self.decode_layer2 = torch.nn.Sequential(
            torch.nn.Conv2d(in_channels=features*4, out_channels=features*2, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features * 2),
            torch.nn.ReLU(),
            torch.nn.Conv2d(in_channels=features*2, out_channels=features*2, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features * 2),
            torch.nn.ReLU()
        )
        self.upconv1 = torch.nn.ConvTranspose2d(
            features * 2, features, kernel_size=2, stride=2
        )
        self.decode_layer1 = torch.nn.Sequential(
            torch.nn.Conv2d(in_channels=features*2, out_channels=features, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features),
            torch.nn.ReLU(),
            torch.nn.Conv2d(in_channels=features, out_channels=features, kernel_size=3, padding=1, stride=1),
            torch.nn.BatchNorm2d(num_features=features),
            torch.nn.ReLU()
        )
        self.out_layer = torch.nn.Sequential(
            torch.nn.Conv2d(in_channels=features, out_channels=out_features, kernel_size=1, padding=0, stride=1),
        )

    def forward(self, x):
        enc1 = self.encode_layer1(x)
        enc2 = self.encode_layer2(self.pool1(enc1))
        enc3 = self.encode_layer3(self.pool2(enc2))
        enc4 = self.encode_layer4(self.pool3(enc3))

        bottleneck = self.encode_decode_layer(self.pool4(enc4))
        dec4 = self.upconv4(bottleneck)
        dec4 = torch.cat((dec4, enc4), dim=1)
        dec4 = self.decode_layer4(dec4)

        dec3 = self.upconv3(dec4)
        dec3 = torch.cat((dec3, enc3), dim=1)
        dec3 = self.decode_layer3(dec3)

        dec2 = self.upconv2(dec3)
        dec2 = torch.cat((dec2, enc2), dim=1)
        dec2 = self.decode_layer2(dec2)

        dec1 = self.upconv1(dec2)
        dec1 = torch.cat((dec1, enc1), dim=1)
        dec1 = self.decode_layer1(dec1)

        out = self.out_layer(dec1)
        return out

训练过程

基于像素的交叉熵损失与Adam优化器实现模型训练,输入图像格式为:

代码语言:javascript
复制
NCHW=2x1x320x480

如果硬件条件允许,建议把batchSize可以开4或者8、16尝试做对比测试。这里我训练了15个epoch,训练部分的代码如下:

代码语言:javascript
复制
index = 0
for epoch in range(num_epochs):
    train_loss = 0.0
    for i_batch, sample_batched in enumerate(dataloader):
        images_batch, target_labels = \
            sample_batched['image'], sample_batched['mask']
        if train_on_gpu:
            images_batch, target_labels = images_batch.cuda(), target_labels.cuda()
        optimizer.zero_grad()

        # forward pass: compute predicted outputs by passing inputs to the model
        m_label_out_ = unet(images_batch)

        # calculate the batch loss
        target_labels = target_labels.contiguous().view(-1)
        m_label_out_ = m_label_out_.transpose(1,3).transpose(1, 2).contiguous().view(-1, 2)
        target_labels = target_labels.long()
        loss = cross_loss(m_label_out_, target_labels)

        # backward pass: compute gradient of the loss with respect to model parameters
        loss.backward()

        # perform a single optimization step (parameter update)
        optimizer.step()

        # update training loss
        train_loss += loss.item()
        if index % 100 == 0:
            print('step: {} \tcurrent Loss: {:.6f} '.format(index, loss.item()))
        index += 1

    # 计算平均损失
    train_loss = train_loss / num_train_samples

    # 显示训练集与验证集的损失函数
    print('Epoch: {} \tTraining Loss: {:.6f} '.format(epoch, train_loss))

# save model
unet.eval()
torch.save(unet, 'unet_road_model.pt')

模型测试

对训练生成的UNet模型,使用下面的代码进行测试与验证。测试运行代码如下:

代码语言:javascript
复制
cnn_model = torch.load("./unet_road_model.pt")
root_dir = "D:/pytorch/CrackForest-dataset/test"
fileNames = os.listdir(root_dir)
for f in fileNames:
    image = cv.imread(os.path.join(root_dir, f), cv.IMREAD_GRAYSCALE)
    h, w = image.shape
    img = np.float32(image) /255.0
    img = np.expand_dims(img, 0)
    x_input = torch.from_numpy(img).view( 1, 1, h, w)
    probs = cnn_model(x_input.cuda())
    m_label_out_ = probs.transpose(1, 3).transpose(1, 2).contiguous().view(-1, 2)
    _, output = m_label_out_.data.max(dim=1)
    output[output > 0] = 255
    predic_ = output.view(h, w).cpu().detach().numpy()
    print(predic_.shape)
    cv.imshow("input", image)
    result = cv.resize(np.uint8(predic_), (w, h))

    cv.imshow("unet-segmentation-demo", result)
    cv.waitKey(0)
cv.destroyAllWindows()

运行结果如下:

无裂纹道路

有裂纹道路

君子藏器于身,待时而动

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-11-11,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 OpenCV学堂 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
数据保险箱
数据保险箱(Cloud Data Coffer Service,CDCS)为您提供更高安全系数的企业核心数据存储服务。您可以通过自定义过期天数的方法删除数据,避免误删带来的损害,还可以将数据跨地域存储,防止一些不可抗因素导致的数据丢失。数据保险箱支持通过控制台、API 等多样化方式快速简单接入,实现海量数据的存储管理。您可以使用数据保险箱对文件数据进行上传、下载,最终实现数据的安全存储和提取。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档