前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数据科学实战:保险产品交叉销售预测分析

数据科学实战:保险产品交叉销售预测分析

作者头像
Python数据科学
发布2020-11-19 15:47:14
2.7K0
发布2020-11-19 15:47:14
举报
文章被收录于专栏:Python数据科学Python数据科学

CDA数据分析师 出品

作者:真达、Mika,数据:真达

今天的内容是一期Python实战训练,我们来手把手教你用Python分析保险产品交叉销售和哪些因素有关。

点击下方视频,先睹为快:

01

实战背景

首先介绍下实战的背景:

这次的数据集来自kaggle:

https://www.kaggle.com/anmolkumar/health-insurance-cross-sell-prediction

我们的客户是一家保险公司,最近新推出了一款汽车保险。现在他们的需要是建立一个模型,用来预测去年的投保人是否会对这款汽车保险感兴趣。

我们知道,保险单指的是,保险公司承诺为特定类型的损失、损害、疾病或死亡提供赔偿保证,客户则需要定期向保险公司支付一定的保险费。

这里再进一步说明一下。

例如,你每年要为20万的健康保险支付2000元的保险费。那么你肯定会想,保险公司只收取5000元的保费,这种情况下,怎么能承担如此高的住院费用呢? 这时,“概率”的概念就出现了。例如,像你一样,可能有100名客户每年支付2000元的保费,但当年住院的可能只有少数人,(比如2-3人),而不是所有人。通过这种方式,每个人都分担了其他人的风险。

和医疗保险一样,买了车险的话,每年都需要向保险公司支付一定数额的保险费,这样在车辆发生意外事故时,保险公司将向客户提供赔偿(称为“保险金额”)。

我们要做的就是建立模型,来预测客户是否对汽车保险感兴趣。这对保险公司来说是非常有帮助的,公司可以据此制定沟通策略,接触这些客户,并优化其商业模式和收入。

02

数据理解

为了预测客户是否对车辆保险感兴趣,我们需要了解一些客户信息 (性别、年龄等)、车辆(车龄、损坏情况)、保单(保费、采购渠道)等信息。

数据划分为训练集和测试集,训练数据包含381109笔客户资料,每笔客户资料包含12个字段,1个客户ID字段、10个输入字段及1个目标字段-Response是否响应(1代表感兴趣,0代表不感兴趣)。测试数据包含127037笔客户资料;字段个数与训练数据相同,目标字段没有值。字段的定义可参考下文。

下面我们开始吧!

03

数据读入和预览

首先开始数据读入和预览。

代码语言:javascript
复制
# 数据整理
import numpy as np 
import pandas as pd 

# 可视化
import matplotlib.pyplot as plt 
import seaborn as sns 
import plotly as py 
import plotly.graph_objs as go 
import plotly.express as px 
pyplot = py.offline.plot 
from exploratory_data_analysis import EDAnalysis # 自定义
代码语言:javascript
复制
# 读入训练集
train = pd.read_csv('../data/train.csv')
train.head() 
代码语言:javascript
复制
# 读入测试集
test = pd.read_csv('../data/test.csv')
test.head() 
代码语言:javascript
复制
print(train.info())
print('-' * 50)
print(test.info()) 
代码语言:javascript
复制
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 381109 entries, 0 to 381108
Data columns (total 12 columns):
 #   Column                Non-Null Count   Dtype  
---  ------                --------------   -----  
 0   id                    381109 non-null  int64  
 1   Gender                381109 non-null  object 
 2   Age                   381109 non-null  int64  
 3   Driving_License       381109 non-null  int64  
 4   Region_Code           381109 non-null  float64
 5   Previously_Insured    381109 non-null  int64  
 6   Vehicle_Age           381109 non-null  object 
 7   Vehicle_Damage        381109 non-null  object 
 8   Annual_Premium        381109 non-null  float64
 9   Policy_Sales_Channel  381109 non-null  float64
 10  Vintage               381109 non-null  int64  
 11  Response              381109 non-null  int64  
dtypes: float64(3), int64(6), object(3)
memory usage: 34.9+ MB
None
--------------------------------------------------
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 127037 entries, 0 to 127036
Data columns (total 11 columns):
 #   Column                Non-Null Count   Dtype  
---  ------                --------------   -----  
 0   id                    127037 non-null  int64  
 1   Gender                127037 non-null  object 
 2   Age                   127037 non-null  int64  
 3   Driving_License       127037 non-null  int64  
 4   Region_Code           127037 non-null  float64
 5   Previously_Insured    127037 non-null  int64  
 6   Vehicle_Age           127037 non-null  object 
 7   Vehicle_Damage        127037 non-null  object 
 8   Annual_Premium        127037 non-null  float64
 9   Policy_Sales_Channel  127037 non-null  float64
 10  Vintage               127037 non-null  int64  
dtypes: float64(3), int64(5), object(3)
memory usage: 10.7+ MB
None

04

探索性分析

下面,我们基于训练数据集进行探索性数据分析。

1. 描述性分析

首先对数据集中数值型属性进行描述性统计分析。

代码语言:javascript
复制
desc_table = train.drop(['id', 'Vehicle_Age'], axis=1).describe().T
desc_table

通过描述性分析后,可以得到以下结论。

从以上描述性分析结果可以得出:

  • 客户年龄:客户的年龄范围在20 ~ 85岁之间,平均年龄是38岁,青年群体居多;
  • 是否有驾照:99.89%客户都持有驾照;
  • 之前是否投保:45.82%的客户已经购买了车辆保险;
  • 年度保费:客户的保费范围在2630 ~ 540165之间,平均的保费金额是30564。
  • 往来时长:此数据基于过去一年的数据,客户的往来时间范围在10~299天之间,平均往来时长为154天。
  • 是否响应:平均来看,客户对车辆保险感兴趣的概率为12.25%。

2. 目标变量的分布

训练集共有381109笔客户资料,其中感兴趣的有46710人,占比12.3%,不感兴趣的有334399人,占比87.7%。

代码语言:javascript
复制
train['Response'].value_counts() 
0    334399
1     46710
Name: Response, dtype: int64
代码语言:javascript
复制
values = train['Response'].value_counts().values.tolist()

# 轨迹
trace1 = go.Pie(labels=['Not interested', 'Interested'], 
                values=values,
                hole=.5,
                marker={'line': {'color': 'white', 'width': 1.3}}
               )
# 轨迹列表
data = [trace1] 
# 布局
layout = go.Layout(title=f'Distribution_ratio of Response', height=600)
# 画布
fig = go.Figure(data=data, layout=layout)
# 生成HTML
pyplot(fig, filename='./html/目标变量分布.html') 

3. 性别因素

从条形图可以看出,男性的客户群体对汽车保险感兴趣的概率稍高,是13.84%,相较女性客户高出3个百分点。

代码语言:javascript
复制
pd.crosstab(train['Gender'], train['Response'])  
代码语言:javascript
复制
# 实例类
eda = EDAnalysis(data=train, id_col='id', target='Response')

# 柱形图
fig = eda.draw_bar_stack_cat(colname='Gender')
pyplot(fig, filename='./html/性别与是否感兴趣.html') 

4. 之前是否投保

没有购买汽车保险的客户响应概率更高,为22.54%,有购买汽车保险的客户则没有这一需求,感兴趣的概率仅为0.09%。

代码语言:javascript
复制
pd.crosstab(train['Previously_Insured'], train['Response'])  
代码语言:javascript
复制
fig = eda.draw_bar_stack_cat(colname='Previously_Insured')
pyplot(fig, filename='./html/之前是否投保与是否感兴趣.html')  

5. 车龄因素

车龄越大,响应概率越高,大于两年的车龄感兴趣的概率最高,为29.37%,其次是1~2年车龄,概率为17.38%。小于1年的仅为4.37%。

6. 车辆损坏情况

车辆曾经损坏过的客户有较高的响应概率,为23.76%,相比之下,客户过去车辆没有损坏的响应概率仅为0.52%

7. 不同年龄

从直方图中可以看出,年龄较高的群体和较低的群体响应的概率较低,30~60岁之前的客户响应概率较高。

通过可视化探索,我们大致可以知道:

车龄在1年以上,之前有车辆损坏的情况出现,且未购买过车辆保险的客户有较高的响应概率。

05

数据预处理

此部分工作主要包含字段选择,数据清洗和数据编码,字段的处理如下:

  • Region_Code和Policy_Sales_Channel:分类数过多,且不易解读,删除;
  • Annual_Premium:异常值处理
  • Gender、Vehicle_Age、Vehicle_Damage:分类型数据转换为数值型编码
代码语言:javascript
复制
# 删除字段
train = train.drop(['Region_Code', 'Policy_Sales_Channel'], axis=1) 

# 盖帽法处理异常值
f_max = train['Annual_Premium'].mean() + 3*train['Annual_Premium'].std()
f_min = train['Annual_Premium'].mean() - 3*train['Annual_Premium'].std() 

train.loc[train['Annual_Premium'] > f_max, 'Annual_Premium'] = f_max
train.loc[train['Annual_Premium'] < f_min, 'Annual_Premium'] = f_min 

# 数据编码
train['Gender'] = train['Gender'].map({'Male': 1, 'Female': 0}) 
train['Vehicle_Damage'] = train['Vehicle_Damage'].map({'Yes': 1, 'No': 0}) 
train['Vehicle_Age'] = train['Vehicle_Age'].map({'< 1 Year': 0, '1-2 Year': 1, '> 2 Years': 2}) 
train.head() 

测试集做相同的处理:

代码语言:javascript
复制
# 删除字段
test = test.drop(['Region_Code', 'Policy_Sales_Channel'], axis=1)  
# 盖帽法处理
test.loc[test['Annual_Premium'] > f_max, 'Annual_Premium'] = f_max
test.loc[test['Annual_Premium'] < f_min, 'Annual_Premium'] = f_min 

# 数据编码
test['Gender'] = test['Gender'].map({'Male': 1, 'Female': 0}) 
test['Vehicle_Damage'] = test['Vehicle_Damage'].map({'Yes': 1, 'No': 0}) 
test['Vehicle_Age'] = test['Vehicle_Age'].map({'< 1 Year': 0, '1-2 Year': 1, '> 2 Years': 2}) 
test.head() 

06

数据建模

我们选择使用以下几种模型进行建置,并比较模型的分类效能。

首先在将训练集划分为训练集和验证集,其中训练集用于训练模型,验证集用于验证模型效果。首先导入建模库:

代码语言:javascript
复制
# 建模
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from lightgbm import LGBMClassifier

# 预处理
from sklearn.preprocessing import StandardScaler, MinMaxScaler

# 模型评估
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, f1_score, roc_auc_score
代码语言:javascript
复制
# 划分特征和标签
X = train.drop(['id', 'Response'], axis=1)
y = train['Response'] 

# 划分训练集和验证集(分层抽样) 
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, stratify=y, random_state=0) 
print(X_train.shape, X_val.shape, y_train.shape, y_val.shape) 
(304887, 8) (76222, 8) (304887,) (76222,)
代码语言:javascript
复制
# 处理样本不平衡,对0类样本进行降采样
from imblearn.under_sampling import RandomUnderSampler

under_model = RandomUnderSampler(sampling_strategy={0:133759, 1:37368}, random_state=0)
X_train, y_train = under_model.fit_sample(X_train, y_train)  
# 保存一份极值标准化的数据
mms = MinMaxScaler()

X_train_scaled = pd.DataFrame(mms.fit_transform(X_train), columns=x_under.columns)
X_val_scaled = pd.DataFrame(mms.transform(X_val), columns=x_under.columns)

# 测试集
X_test = test.drop('id', axis=1) 
X_test_scaled = pd.DataFrame(mms.transform(X_test), columns=X_test.columns)  

1. KNN算法

代码语言:javascript
复制
# 建立knn
knn = KNeighborsClassifier(n_neighbors=3, n_jobs=-1)
knn.fit(X_train_scaled, y_train)

y_pred = knn.predict(X_val_scaled)

print('Simple KNeighborsClassifier accuracy:%.3f' % (accuracy_score(y_val, y_pred)))
print('Simple KNeighborsClassifier f1_score: %.3f' % (f1_score(y_val, y_pred)))  
print('Simple KNeighborsClassifier roc_auc_score: %.3f' % (roc_auc_score(y_val, y_pred))) 
代码语言:javascript
复制
Simple KNeighborsClassifier accuracy:0.807
Simple KNeighborsClassifier f1_score: 0.337
Simple KNeighborsClassifier roc_auc_score: 0.632
代码语言:javascript
复制
# 对测试集评估
test_y = knn.predict(X_test_scaled)
test_y[:5] 
array([0, 0, 1, 0, 0], dtype=int64)

2. Logistic回归

代码语言:javascript
复制
# Logistic回归
lr = LogisticRegression()
lr.fit(X_train_scaled, y_train)

y_pred = lr.predict(X_val_scaled)

print('Simple LogisticRegression accuracy:%.3f' % (accuracy_score(y_val, y_pred)))
print('Simple LogisticRegression f1_score: %.3f' % (f1_score(y_val, y_pred)))  
print('Simple LogisticRegression roc_auc_score: %.3f' % (roc_auc_score(y_val, y_pred)))
代码语言:javascript
复制
Simple LogisticRegression accuracy:0.863
Simple LogisticRegression f1_score: 0.156
Simple LogisticRegression roc_auc_score: 0.536

3. 决策树

代码语言:javascript
复制
# 决策树
dtc = DecisionTreeClassifier(max_depth=10, random_state=0) 
dtc.fit(X_train, y_train)

y_pred = dtc.predict(X_val) 

print('Simple DecisionTreeClassifier accuracy:%.3f' % (accuracy_score(y_val, y_pred)))
print('Simple DecisionTreeClassifier f1_score: %.3f' % (f1_score(y_val, y_pred)))  
print('Simple DecisionTreeClassifier roc_auc_score: %.3f' % (roc_auc_score(y_val, y_pred))) 
代码语言:javascript
复制
Simple DecisionTreeClassifier accuracy:0.849
Simple DecisionTreeClassifier f1_score: 0.310
Simple DecisionTreeClassifier roc_auc_score: 0.603

4. 随机森林

代码语言:javascript
复制
# 决策树
rfc = RandomForestClassifier(n_estimators=100, max_depth=10, n_jobs=-1)  
rfc.fit(X_train, y_train)

y_pred = rfc.predict(X_val) 

print('Simple RandomForestClassifier accuracy:%.3f' % (accuracy_score(y_val, y_pred)))
print('Simple RandomForestClassifier f1_score: %.3f' % (f1_score(y_val, y_pred)))  
print('Simple RandomForestClassifier roc_auc_score: %.3f' % (roc_auc_score(y_val, y_pred))) 
代码语言:javascript
复制
Simple RandomForestClassifier accuracy:0.870
Simple RandomForestClassifier f1_score: 0.177
Simple RandomForestClassifier roc_auc_score: 0.545

5. LightGBM

代码语言:javascript
复制
lgbm = LGBMClassifier(n_estimators=100, random_state=0)
lgbm.fit(X_train, y_train)

y_pred = lgbm.predict(X_val)

print('Simple LGBM accuracy: %.3f' % (accuracy_score(y_val, y_pred)))
print('Simple LGBM f1_score: %.3f' % (f1_score(y_val, y_pred)))  
print('Simple LGBM roc_auc_score: %.3f' % (roc_auc_score(y_val, y_pred))) 
代码语言:javascript
复制
Simple LGBM accuracy: 0.857
Simple LGBM f1_score: 0.290
Simple LGBM roc_auc_score: 0.591

综上,以f1-score作为评价标准的情况下,KNN算法有较好的分类效能,这可能是由于数据样本本身不平衡导致,后续可以通过其他类别不平衡的方式做进一步处理,同时可以通过参数调整的方式来优化其他模型,通过调整预测的门槛值来增加预测效能等其他方式。

公众号后台回复:保险

获取详细数据和代码

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-11-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Python数据科学 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档