前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >基于卷积神经网络(CNN)的仙人掌图像分类

基于卷积神经网络(CNN)的仙人掌图像分类

作者头像
小白学视觉
发布2020-12-17 10:17:45
5070
发布2020-12-17 10:17:45
举报
文章被收录于专栏:深度学习和计算机视觉

今天我们的目标是建立一个分类器,将图像分类为“仙人掌”或“非仙人掌”。

01. 数据集

这种分类问题是kaggle挑战的内容之一。目标是建立一个分类器,将图像分类为“仙人掌”或“非仙人掌”。训练集包含17500张图像,而验证集包含4000张图像。具有仙人掌迹象的图像位于名为cactus的文件夹中,反之亦然。以下是训练数据集中的示例。

仙人掌

没有仙人掌

02. 数据预处理

当我们通过用pyplot库绘制其中一些图像时,我们可以观察到它们的大小不同,这对于以后的训练过程是不利的。另请注意,我们已用指示仙人掌和非仙人掌的1和0标记了所有图像。

因此,我们需要将所有图像规格化为相同大小。根据我们的实验,最佳策略是将这些图像裁剪为48 x 48像素大小。以下是一些裁剪的图像。第一行显示原始图像,第二行显示更改的图像。

这种方法的好处是它可以保存图像的所有细节,但是有时会丢失图像的边缘,如果图像太小,我们需要使用黑色背景扩展图像以使其与图像的大小相同。丢失边缘可能是一个大问题,因为我们可能会把仙人掌从原图像中切除了。

03. CNN结构与训练

卷积神经网络包含3层卷积层和2个完全连接层。每个卷积层都有一个3 x 3的滤波器,该滤波器的步幅为2,输出为64个节点。之后,数据会通过最大池化层,以防止过度拟合并提取有用的信息。

代码语言:javascript
复制
model = Sequential()
model.add(Conv2D(64, (3,3), input_shape = X_train.shape[1:]))
model.add(Activation(‘relu’))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64, (3,3)))
model.add(Activation(‘relu’))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64, (3,3)))
model.add(Activation(‘relu’))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Dense(1))
model.add(Activation(‘sigmoid’))
model.compile(loss=”binary_crossentropy”,
optimizer=”adam”,
metrics=[‘accuracy’])
history = model.fit(X_train, Y_train, batch_size=32, epochs=10, validation_split=0.1, use_multiprocessing=True)
model.save(‘model_48_crop’)

以下是模型结构的概述。

模型总结

我们用10个epochs对模型进行训练,结果显示出惊人的效果。在下面的代码段中,第一个精度是训练精度,第二个精度是验证精度。请注意,在最终预测之前,我们将训练集的一部分(10%)用作验证集。

04. 测试结果

现在,我们使用kaggle提供的validation_set作为测试集,以对我们的训练模型进行最终预测。

代码语言:javascript
复制
testdata = pd.read_pickle(“pickled_data_validation/crop_images(48, 48).pkl”)
test_images = testdata.loc[:, data.columns != ‘class’]
test_images = test_images.to_numpy()
test_images = test_images.reshape((len(test_images),48, 48, 3))
test_images = test_images/255.0
print(test_images.shape)
test_labels = testdata[‘class’]
test_labels = test_labels.to_numpy()
type(test_labels)
test_labels = test_labels.reshape((len(test_labels),1))
loss, acc = new_model.evaluate(test_images, test_labels, verbose=2)
print(‘Restored model, accuracy: {:5.2f}%’.format(100*acc))

这是结果。它达到了近99%的准确率,这是惊人的。

05. 结论

这篇文章的主要目的是与大家分享卷积网络的结构,解决了这类二元分类问题,例如猫和狗的图像分类。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-12-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 小白学视觉 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档