Unet车牌分割,矫正

1.车牌定位

首先贴一下图像分割的效果图:

我们可以通过图像分割算法对一张输入图片进行分割,分割后的图形其实是对原图中的区域进行的分类标注,例如这里我们可以将原图标注为2类,一类就是车牌区域,还有一类就是无关的背景区域。说到标注图形就不得不说labelme了,我们可以在cmd界面通过命令 pip install labelme 进行labelme库的安装,安装结束在cmd界面输入labelme即可打开lablem软件的标注界面如下:

1. 点击OpenDir ,选择我们准备好的车辆数据集(注意:一定要先把图片全都resize为训练时所需的大小,再进行标注。我们知道图片数据的范围是0-255,背景为黑色0,车牌区域为255,我们需要的是标注好的图片即img_mask中值只有{0,255}这2种,如果我们不先resize,标注完再resize会导致一个大问题,就是数据的值并不是二类,会出现{0,1,10,248,251,255}等类似的多值问题,我在之前就遇到这样的问题,不得已又重新标注了300多张图)

2. 点击左上角File—>将Save Automatically勾选上,点击Change Output Dir选择保存路径,我这里是在桌面D:/desktop/下新建了一个文件夹命名为labelme,在labelm文件夹中新建了一个json文件夹用于保存我们标注的json数据,这里我们Change Output Dir的保存路径就选它,还新建了一个data文件夹用于存放后续转换的图片数据,而待标注图片在pic文件中,存放的都是resize好的512×512的图片,命名格式最好像我这样

3. 准备好上述一切就可以开始标注了,点击软件左侧的

这是画任意多边形的按钮,鼠标左键点击进行标注,最后双击鼠标左键会锁定标注区域,出现如下图界面,第一次标注需输入名称,后续标注就自动显示了,点击ok后标注的线条变为红色,同时json文件夹也会相应保存和pic名字对应的json文件:

4. 全部标注结束后,使用如下代码将json数据提取出来并保存到train_image和train_label文件夹中,u-net部分的数据集我一共标注了1200多张,最终效果很棒,达到了定位的效果。

标注好的u-net训练图片就准备好了,分别在train_image和train_label文件夹中,一并放在unet_datasets文件夹内,如下图所示:

接下来是u-net模型搭建和训练,使用tensorflow的keras实现,贴一下我训练u-net用的代码:

代码 ,模型 获取方式

关注微信公众号 datayx 然后回复 unet 即可获取。

AI项目体验地址 https://loveai.tech

2.车牌矫正

训练u-net得到unet.h5

u-net分割和cv2矫正的代码

上述代码关键部分是要获取车牌四边形的四个顶点,一开始只使用cont中坐标到外接矩形四个端点的距离,发现对于倾斜度很高的车牌效果可能不佳,见下图,可以观察到,计算得到的4个黄色坐标中,左右有2个黄色点并不处在四边形的顶点位置,这样矫正效果大打折扣,同时也会影响后续的识别效果

发现上述问题后,我又想了个方法就是加入了上述的point_to_line_distance函数,即还计算坐标点到上下两条边的距离,并添加了权重,经过调整权重设置为0.975倍的点线距离,0.025点到端点距离时整体效果较佳,最终矫正效果如下图:

矫正效果大大改善后,识别率也将大大提高。

最终运行后上述代码后,提取的license文件夹中的车牌图如下:


本文分享自微信公众号 - 机器学习AI算法工程(datayx)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2021-01-14

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 简单车牌检测

    现在社会的发展迅速,人工智能也是现今最火热的趋势之一。很多智能化理念都会一一去实现,只是时间和策划的问题。 今天什么最多,其实有一个绝对是车。所以未来的智能交...

    计算机视觉研究院
  • CV进阶 | 这样的车牌检测你知道吗?

    通过之前的4期计算机视觉简单介绍,刚刚像入门的你应该知晓最基础的知识了,而且明确自己要学的内容,今天我们先以一个简单的小Demo来带大家进入真正的计算机视觉领域...

    计算机视觉研究院
  • 浅析一种基于Android、iOS平台的手机拍照车牌识别方法的实现过程及应用领域

    目前,我国警务通、停车场手持收费机等移动终端的使用比较普及,如果在这些终端上能够集成车牌识别功能,替代原来的手工记录,然后再人工录入电脑的步骤,让车牌的识别、记...

    AI人工智能
  • 基于Android、iOS手机平台的移动端车牌识别技术,实现手机扫描识别车牌

    随着移动行业的爆发式发展,手机配置不断提高,基于手机平台的信息采集、图像处理、数据传输等方面的研究也成为了热点,这使得基于手机平台上的车牌识别成为可能。传统的车...

    AI人工智能
  • pytorch+Unet图像分割:将图片中的盐体找出来

    什么是图像分割问题呢?简单的来讲就是给一张图像,检测是用框出框出物体,而图像分割分出一个物体的准确轮廓。也这样考虑,给出一张图像 I,这个问题就是求一个函数,从...

    机器学习AI算法工程
  • 移动端车牌识别技术的应用,有效解决路侧停车收费困难的问题

    随着社会的发展,城市中的汽车越来越多。城市由于汽车的增加造成的拥挤给人们的生活带来了极大的不便,这种不便迫使人们去寻找高技术有效手段去解决这种不便。很多的大型停...

    AI人工智能
  • 车牌检测和识别的Python应用软件实现

    车牌的检测和识别的应用非常广泛,比如交通违章车牌追踪,小区或地下车库门禁。在对车牌识别和检测的过程中,因为车牌往往是规整的矩形,长宽比相对固定,色调纹理相对固定...

    小小科
  • 基于UNet网络实现的人像分割 | 附数据集

    人像分割的相关应用非常广,例如基于人像分割可以实现背景的替换做出各种非常酷炫的效果。我们将训练数据扩充到人体分割,那么我们就是对人体做美颜特效处理,同时对背景做...

    AI算法与图像处理
  • 云+社区分享——腾讯云OCR文字识别

    2018年3月27日腾讯云云+社区联合腾讯云智能图像团队共同在客户群举办了腾讯云OCR文字识别——智能图像分享活动,活动举办期间用户耐心听分享嘉宾的介绍,并提出...

    Techeek
  • 车牌检测和识别的Python应用软件实现

    车牌的检测和识别的应用非常广泛,比如交通违章车牌追踪,小区或地下车库门禁。在对车牌识别和检测的过程中,因为车牌往往是规整的矩形,长宽比相对固定,色调纹理相对固定...

    用户1564362
  • 图像分割必备知识点 | Unet详解 理论+ 代码

    语义分割(Semantic Segmentation)是图像处理和机器视觉一个重要分支。与分类任务不同,语义分割需要判断图像每个像素点的类别,进行精确分割。语义...

    机器学习炼丹术
  • 使用图像分割来做缺陷检测的一个例子

    给定一张图像,我们人类可以识别图像中的物体。例如,我们可以检测图像中是否有汽车,树木,人等。如果我们可以分析图像并检测物体,我们可以教机器做同样的事情吗?

    OpenCV学堂
  • 医学图像分割:U-Net系列网络简介

    在图像分割任务特别是医学图像分割中,U-Net[1]无疑是最成功的方法之一,该方法在2015年MICCAI会议上提出,目前已达到四千多次引用。其采用的编码器(下...

    马上科普尚尚
  • Kaggle大神亲述:我是如何半年拿5次金牌晋升Grandmaster的?

    Kaggle是全球首屈一指的数据科学、机器学习竞赛和分享平台,企业和研究者可以在Kaggle平台发布数据、举行/参加竞赛,通过“众包”的形式产生最好的模型,现在...

    昱良
  • 物体识别技术长篇研究

    物体识别是计算机视觉领域中的一项基础研究,它的任务是识别出图像中有什么物体,并报告出这个物体在图像表示的场景中的位置和方向。目前物体识别方法可以归为两类:基于模...

    放飞人夜
  • 关于车牌识别过程中的工作流程框架分析

    车辆检测跟踪模块   车辆检测跟踪模块主要对视频流进行分析,判断其中车辆的位置,对图像中的车辆进行跟踪,并在车辆位置最佳时刻,记录该车辆的特写图片,由于加入了跟...

    智能算法
  • 谈一谈UNet图像分割

    【导语】这篇文章主要针对于图像分割的算法的一些理解,主要是一个比较经典的UNet系列的网络的认识。最后希望看完这篇文章的读者可以有所收获,对于一些个人的理解欢迎...

    3D视觉工坊
  • 走进AI时代的文档识别技术 之文档重建

    ? 导读:作者系腾讯QQ研发中心——CV应用研究组的totoralin。本文主要介绍基于深度学习的文档重建框架,通过文档校正、版面分析、字体识别和阅读排序将纸...

    腾讯技术工程官方号
  • Unet神经网络为什么会在医学图像分割表现好?

    https://www.zhihu.com/question/269914775/answer/586501606

    AI算法与图像处理

扫码关注云+社区

领取腾讯云代金券