导读:数据分析究竟是什么?需要掌握哪些技能?如何进行数据分析?本文是对于数据分析的实践与总结。
作者:木兮月宝
来源:木木自由(ID:huangxiang-1314)
在大数据和5G技术逐渐成为趋势的时代背景下,我们几乎每天参与到各种各样涉及到数据的场合,如社交网络、消费信息、旅游记录……我们几乎每天都会与各种各样的数据打交道,如企业层面的销售数据、运营数据、产品数据、活动数据……
这将是一个以"数据"说话的时代,更是一个依靠"数据"竞争的时代!麦肯锡公司称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。”并且,在世界500强企业中,有90%以上都建立了专门的数据分析部门。由此可见,数据分析的重要性以及未来趋势。
那么,数据分析究竟是什么?需要掌握哪些技能?如何进行数据分析?等等....
我今天要分享的主题是:数据分析之道,抽丝剥茧与存乎一心,也就是我对于数据分析本身的实践与总结。
01 解构数据分析
我们字面拆解:数据 + 分析,数据是基础,分析是主导。可见,数据并不意味着价值,分析和决策才能创造价值!
而数据分析:思维方式大于实践方法。
数据分析对一个企业有巨大价值,则是对企业“数据”进行全方位的分析,两者相辅相成才能实现企业决策价值最大化。
所以,我们做好数据分析,要对数据分析的价值有清楚的定位,不能沦为单纯的 “取数”、“做表”、“写报告”,数据分析应该是对业务有实际的指导意义,并结合业务痛点去发现问题从而解决问题的工具。
1. 灵魂三问
数据分析的灵魂三问,这就是我今天讲的主要内容:
一谈到数据分析,我们就会联想到这些问题。
然而,我接触数据分析的契机,是从刚开始工作是接触的数据处理和市场调研,再之后商家代运营,产品数据运营等,这些工作中都涉及数据分析,到现在和朋友一起创建数据分析社群。
其实,我理解的数据分析不是从什么高大上的角度出发,它绕不开是什么、是多少、为什么、会怎样、又如何这几个问题。
说明白点:
其核心就是分析数据(结合统计学等知识),找到规律(比如异动),给出结论和建议,进而能够辅助决策。
那么,接下来我们来看一下数据分析在工作中几种常见的应用场景,切身体会一下:
……
以上就是工作中遇到的数据分析应用的场景,然而,我在曾经公司里面亲眼看到,日常工作涉及到决策的时候,会常常出现如下场景:
有以上这样的场景,其根本原因在于缺乏数据思维思考逻辑,对业务的思维只停留在浅层的对比,甚至会出现“拍脑袋决定”的情况。
所以,在工作生活中,我们应该不断培养数据思维的习惯。举几个习惯:
以上是我们可以在生活中培养数据思维的习惯思考场景,当然,在实际工作中的前提是,我们要熟悉自己的业务流程以及业务指标等,我们在培养数据思维的同时数据敏感度会不断提升。
2. 数据的特性
数据是客观事物发生留下的客观事实,发展变动的数字化记录。随着科学技术的发展,数据的概念内涵越来越广泛包括数值,文本,声音,图像,视频等。
而新增用户、留存、用户活跃、转化、收入、用户规模等,通过数据量化,我们才能精准感知业务指标。所以,数据是用来描述业务指标的,是被量化的业务指标。但数据的本质还是数值,只是属于最后结果的一种表现形式,要想改变结果,只能去寻找因,从因上做改变,才能引起结果的改变。
而数据的特性有:
3. 分析的本质
分析的思维过程是:
分析本质即面临各种问题时,对于企业而言,让业务更加清晰,让决策更加高效。对于个人而言,认清现状,让自己的决定更加有利。
这些东西说起来都是高大上的,简单来说,能通过数据找到问题,准确地定位问题,准确地找到问题产生的原因,为下一步的改进,找到机会点,也就是所谓的:数据驱动。
4. 数据分析需要怎样的能力
1)通关心态
当你决定进入数据分析行业的第一天,你就要对标行业中的90分高手、100分高手。具备通关的心态,3年,也就是6个6个月。每6个月左右,至少要突破1个关卡。如此,6个6个月过后,你往往能突破到第6关、第7关。
如果是你天赋极强的人,或者你的运气很好,你极可能就成为顶尖专家了。
那么,我们来看一下“德雷福斯模型”,把打怪升级的成长过程分为五级。
2)综合的能力
数据分析要做好,综合要求非常高,因为大多数据分析是要向老板汇报的,厉害的数据分析人员至少要具备业务能力、思考能力、沟通能力、表达能力、分析能力、数据能力、技术能力及统计能力。
以上,就是数据分析需要怎样的能力,其实,在很多企业中,数据分析是个岗位,但我一直认为数据分析仅仅是数据从业者谋生的高级手段,数据运营、数据产品、数据管理等各类岗位都需要数据分析的技能,比如数据运营就是数据分析的一种持续迭代形式。
总之,优秀的数据分析人员一定是主动发现问题、解决问题并扛得住压力的。
5. 常见的数据分析方法汇总
数据分析方法其实有很多,包含战略与组织、营销、人力资源、生产管理、财务管理、供应链管理等等方面。
1)战略与组织方面
……
2)市场营销方面
……
3)人力资源方面
……
4)生产管理方面
……
5)财务管理方面
……
6)供应链管理方面
……
▲我挑选了几种经典的数据分析方法,若大家对这些方法感兴趣自己去查找学习~这里不一一展开了
02 实践总结
1)为什么要抽丝剥茧?
我们来看一个例子:当你去分析某段时间内一个产品的活跃数据,就觉得这个事情很简单啊,不就是把数据统计清楚吗?看看趋势,对比上周、上一年,然后进行分群分析,哪部分用户流失等等。
看做完一遍之后呢,你会面临一个纠结的情绪:同样的指标,有同词不同意;有同意不同词;还有互相包含,就是我的这个指标当中有你的一部分,你的指标中有我的一部分啊;还有各不相干毫无关联的指标却出现在同一个报表上——这都是有可能的。
其实,在做数据分析的时候,我们就会有一个扪心自问的过程:我们到底从何下手?从哪里开始分析呢?
我自己的思考就是:先忽略乱七八糟,高大上的概念,回归到本质,其实,明确分析目标后,数据分析就是为了指标服务的,最终的体现就是某个数据指标提升或者下降,进而影响业务决策,所以需要先了解一个问题:什么是指标?它应该如何被解释?
指标,它分成单一指标和衍生指标,衍生指标有一个或多个单一指标的计算得来。指标有维度和度量组成,需要注意的是,衍生指标的维度来源于组成其单一指标维度的交集。
单一指标需要经过数据统计的前置筛选,才能在逻辑上成立;衍生指标没有自己的统计口径,其统计口径寄生于组成其的单一指标身上。
其实:指标就是由维度和度量组成。
我们可以给指标下定义:指标是描述一个数据统计业务的最小逻辑单元。
例如,咱们来拆解一个数据指标,就需要一个抽丝剥茧的过程,但在实际业务分析中,不一定要拆解的多么细,基本上3个层级就能够指导我们去做一些动作。量化以及拆分指标,是数据分析的灵魂。
2)小结
回归今天的议题是数据分析之道,我们可以回到公司的战略层,回到企业发展的战略上去思考问题,需要我们思考如何应用数据分析,通过数据团队搭建、数据指标监控体系搭建、业务分析模型规划、业务目标规划、相关责任人梳理等方式,快速地帮企业解决问题,实现业务增长!
所以,我认为作为一个数据分析人员而言,抽丝剥茧、总结规律、解决问题的思维方式能力,是最核心的能力。衡量一个数据分析人员是否优秀的标准,并不是学各种SQL、Python/R等数据分析工具,而是,是否能够解构问题思维方式、还原本质、找到规律、寻找提升业务的最优解。
去寻求最优解、发展规律,那就应该运用到自己的思维框架——我们该怎么去找到规律、怎么去发展、怎么去找到这个细节,需要这三步法。
2. 三步法
1)三步法
首先,还原场景,寻找规律;深入细节,全面观察;窥斑见豹群,准确推演;交叉验证,排除影响。要沉的够深,要足够的信心,要扎得够狠。要跳出细节,回归本质,用上帝视角做敏锐的洞察思维,大胆假设,寻找规律。
其次,觉得大方向上没有问题,不要轻易下结论,还要再跳回到那些纷杂的细节当中,去一个一个地验证你总结出的规律是不是适用,要保持一颗谦卑的心。当发现这些规律不适用的时候,就要大胆改正。
最后,就是场景与验证,需要回归到细节,做仔细的核对,小心地求证,严格地论述;要理清场景,一定不要有遗漏,要及时地调整,迭代更新。
2)小结
对于数据分析人员而言,给出的每一份数据,都要抱着对其负责到底的态度,这样大家才能建立相互信任。所以,用思维去击穿复杂的逻辑,抽丝剥茧,发现问题的本质,这是一种需要被加强的能力。
这就是在当下而言,为什么数据产品经理、数据科学家这些厚重的职位,会成为当下的数据分析热门领域的原因——就是因为它对能力跟素质有新的挑战,不是大家能轻易适配的岗位。物竞天择,适者生存,市场规律就是供给多了,需求就容易满足;供给的少,自然价位就高。
所以,你要去做那个供给少的环节,成为这个行业当中比较少见的人,而不是成为普遍的人。
1)指标监控体系的搭建
当你把一个东西解构的足够深的时候,你会面对一堆的需求碎片,万法不离其宗,先找到离你思维逻辑最近的那一步,叫第一层立足点。找逻辑点的时候,我们就要存乎一心,明确分析目的,发现核心指标。尤其是第一指标,在整个分析过程中都不忘最初目的,其实就非常简单。
那么,如何去搭建一个指标监控体系?
①要明确产品业务目标以及KPI和所处的产品阶段
要认清和明确目标。判断业务走势正常还是异常,探索解决问题的办法,都是从计算目标和现状的差距开始的,这一点非常重要。而不同的产品阶段是有不同的产品目标业务的。拆解目标,细分可以有多种类型,比如常见几种的:
②根据现阶段产品业务目标,将数据指标分级
数据指标有很多:日活DAU、月活MAU、下载量、激活量、新增注册量、活跃度(DAU/MAU)、次日留存率、次人均时长、首页访问率、停留率、人均充值金额ARPU、GMV,客单价等等,我们会针对不同的指标,分不同的层级。
一个数据指标,会受到多种因素的影响,而这些因素有内部的,有外部的,我们应当尽可能多的了解所有层面的影响因素,帮助我们对于数据的解读及分析是在一个相对正确的范围内。不一定要拆得太细,否则层级会过深,基本上 3 个层级就能够指导我们去做一些动作。
我们还以上述一级指标 GMV 提升为例,我们拆解后发现是转化率提升,那么转化率就是二级指标。
而三级指标则起到能够直接指导一线运营的角色和作用,接着分平台去拆解各个转化率的时候,我们发现是 IOS 的客户端转化率有所提升。那为什么安卓没有提升,是不是 IOS 最近做了一些迭代?是不是它的一个转换路径比其他端好?这些思考就能指导业务人员展开行动。
③搭建以日、周、月为单位的数据指标监控体系报表
监控每日、过去一周,上周, 上月同周, 上上月同周的数据报表,以图表展示,来反映产品的变化趋势,通过过去的一周数据反映产品现状,通过每日、周、过去三个月的产品业务线数据变化趋势预估未来的变化趋势。
监控指标体系的基本逻辑:先看一级指标,结合二、三指标再预测判断未来趋势。
④根据数据监控结果,明确管理流程,实现控制
第一,当指标有异常状态,明确运营策略执行者。如:
GMV降了→ 客单价降低了→ 用户运营想策略GMV降了→ 某类商品降幅大了→ 商品运营想策略GMV降了→ 外部流量太少了 → 渠道运营想策略
第二,再明确执行时间。要有时间状态和走向判断。如:
过去+负向 → 关注某某的问题过去+正向 → 发现什么的经验未来+负向 → 警惕啥啥的风险未来+正向 → 提示怎样的机会
第三,明确需要多大力度,如:
注意出现异常,要提高等,立即执行。
比如:“如客单价不能在3天内得到改善提高,本月KPI将不达标,需立即优化商品组合,提升客单价”。
第四,复盘改善后效果
搭建数据监控体系,最主要环节就是效果的复盘。而且要先看是哪个层级的效果,再看具体效果大小。
2)小结
我们是要对数据的质量负责、对数据的追踪负责、对数据服务的可靠性负责。回到存乎一心这件事,其实就是从碎片化的需求当中,结合自身和外部资源,将我们思维的底层逻辑体系一点一点的收拢起来,较精细化的解决问题。
而存乎一心的核心是应对诸多碎片化的需求时,有着深刻的洞察,顺势发展,因势利导,随机应变,运用之妙,存乎一心,以满足业务诉求。
03 数据分析之道
新事物的发展速度远远超出我们的想象,因此,关于“道”的思考还需要继续深入,暂且当做是数据分析领域里孜孜不倦又乐在其中地求索。
回想搭建数据分析社群的历程,我们做了很多的准备工作,从社群愿景、价值观、使命的规划,运营体系的搭建,到内容体系的搭建,初始用户调研,后来用户反馈等等,遇到的困难一点点解决。
我觉得我们是站在了内容、商业和体验的三者之间,我们为群友营造用户体验,我们为社群争取商业利益,同时我们也消耗着内容资源,面对内容要高质量提升的挑战。
但是一定要有一个平衡点,这个平衡点就是最优解。我刚才讲的那一切都可以忘掉,那都不是你的数据之道。回到你的实际情况当中,你要这三个点中寻找一个平衡。
所以,回到方法论就是要找到平衡点,也许这个平衡点一脚站在了内容上。
实际上,“数据分析方法论”是承上启下的法门,往下,它们指导着“数据分析工具”的开展,往上,“数据分析之道”是战略,是形而上的价值体系,我们需要建立自己的数据价值观,一以贯之。
因此,如果你想真正的利用好数据分析,上述的抽丝剥茧和存乎一心,才是你们强大之道。
04 结尾
在经济整体下滑的大环境中又受到疫情冲击的2020年,各中小微企业都面临着巨大艰难挑战,并有着前所未有的机遇,希望这篇文章可以为焦虑中的中小微企业对于“数据分析”的应用带来一点思考,帮助实现真正意义上的“数据驱动增长”。
最后,把非常喜欢的一句话送给大家:悲观者往往正确,而乐观者往往成功,与君共勉。艰难环境下,正是逆境崛起和弯道超车的好时机,愿大家都能找到自己的数据分析之道。