前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >线性回归中的L1与L2正则化

线性回归中的L1与L2正则化

作者头像
deephub
发布2021-03-10 14:44:53
8610
发布2021-03-10 14:44:53
举报
文章被收录于专栏:DeepHub IMBA

在这篇文章中,我将介绍一个与回归相关的常见技术面试问题,我自己也经常会提到这个问题:

描述回归建模中的L1和L2正则化方法。

在处理复杂数据时,我们往往会创建复杂的模型。太复杂并不总是好的。过于复杂的模型就是我们所说的“过拟合”,它们在训练数据上表现很好,但在看不见的测试数据上却表现不佳。

有一种方法可以对损失函数的过拟合进行调整,那就是惩罚。通过惩罚或“正则化”损失函数中的大系数,我们使一些(或所有)系数变小,从而使模型对数据中的噪声不敏感。

在回归中使用的两种流行的正则化形式是L1又名Lasso回归,和L2又名Ridge回归。在线性回归中我们使用普通最小二乘(OLS)是用于拟合数据的:我们对残差(实际值与预测值之间的差异)进行平方,以得到均方误差(MSE)。最小的平方误差,或最小的平方,是最适合的模型。

让我们来看看简单线性回归的成本函数:

对于多元线性回归,成本函数应该是这样的,其中?是预测因子或变量的数量。

因此,随着预测器(?)数量的增加,模型的复杂性也会增加。为了缓解这种情况,我们在这个成本函数中添加了一些惩罚形式。这将降低模型的复杂性,有助于防止过拟合,可能消除变量,甚至减少数据中的多重共线性。

L2 -岭回归

L2或岭回归,将?惩罚项添加到系数大小的平方?。?是一个超参数,这意味着它的值是自由定义的。你可以在成本函数的末端看到它。

加上?惩罚,?系数受到约束,惩罚系数大的代价函数。

L1 -Lasso回归

L1或Lasso回归,几乎是一样的东西,除了一个重要的细节-系数的大小不是平方,它只是绝对值。

在这里,成本函数的最后是?的绝对值,一些系数可以被精确地设置为零,而其他的系数则直接降低到零。当一些系数变为零时,Lasso回归的效果是特别有用的,因为它可以估算成本并同时选择系数。。

还有最重要的一点,在进行任何一种类型的正则化之前,都应该将数据标准化到相同的规模,否则罚款将不公平地对待某些系数。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-02-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 DeepHub IMBA 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • L2 -岭回归
  • L1 -Lasso回归
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档