前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >ggplot2实现分半小提琴图绘制基因表达谱和免疫得分

ggplot2实现分半小提琴图绘制基因表达谱和免疫得分

作者头像
生信宝典
发布2021-04-15 10:20:43
3.5K0
发布2021-04-15 10:20:43
举报
文章被收录于专栏:生信宝典

最近看到很多人问下面这个图怎么绘制,看着确实不错。于是我查了一些资料,这个图叫split violin或者half violin,本质上是一种小提琴图。参考代码在https://gist.github.com/Karel-Kroeze/746685f5613e01ba820a31e57f87ec87

这里利用上期处理好的TCGA HNSCC的配对数据进行练习,数据包含43个肿瘤样本和43个癌旁样本。

除了基因表达量绘制的结果展示,最后还附带一个ESTIMATE计算免疫评分的例子。此外,计算免疫浸润主流的方法还有CibersortssGSEA等算法,在之后的推文里我会做一些教程介绍。

具体代码如下:

代码语言:javascript
复制
remove(list = ls()) #一键清空
#加载包
library(ggplot2)
library(reshape2)
library(plyr)

suppressMessages(library(ggpubr))
suppressMessages(library(dplyr))

读入Deseq2标准化后的表达数据

代码语言:javascript
复制
# 1.1 表达数据
data <- read.csv("./Rawdata/TCGA_HNSCpaired_Norexpr_data_paired.csv",
                 header = T,row.names = 1, check.names=F)
data[1:3,1:4]

##       TCGA.CV.6943.01 TCGA.CV.6959.01 TCGA.CV.7438.11 TCGA.CV.7242.11
## AAAS        10.795406       11.198490       10.864833        10.89324
## AACS        12.033001       11.427610       12.173660        11.37317
## AADAC        4.857712        4.740191        8.864625        11.14658

保存为Tab键分割的格式,供estimate包使用。

代码语言:javascript
复制
# 安装ImageGP 包
# library(devtools)
# install_git("https://gitee.com/ct5869/ImageGP.git")
library(ImageGP)
sp_writeTable(data, file="./Rawdata/TCGA_HNSCpaired_Norexpr_data_paired.tsv")

筛选要绘制的基因

代码语言:javascript
复制
selected_gene <- c("S100A9","MT-CO2","MT-CO3","MT-CO1","KRT16","S100A8","KRT14","MT-CYB")

data <- data[selected_gene,]

读入分组数据

代码语言:javascript
复制
# 1.2 分组数据
phenotype <- read.csv("./Rawdata/TCGA_HNSCpaired.metadata.csv",header = T,row.names = 1,check.names=F, stringsAsFactors = T)
phenotype <- phenotype[,c("group","subject"),drop=F]
head(phenotype)

##                    group      subject
## TCGA.CV.6943.01    Tumor TCGA.CV.6943
## TCGA.CV.6959.01    Tumor TCGA.CV.6959
## TCGA.CV.7438.11 Nontumor TCGA.CV.7438
## TCGA.CV.7242.11 Nontumor TCGA.CV.7242
## TCGA.CV.7432.01    Tumor TCGA.CV.7432
## TCGA.CV.6939.11 Nontumor TCGA.CV.6939

绘图数据的格式准备

代码语言:javascript
复制
## 
# 2.1 把分组信息加进去
data_new <- data.frame(t(data))
data_new$sample = row.names(data_new)
data_new <- merge(data_new, phenotype,by.x = "sample",by.y = 0)

# 2.2 融合数据
data_new = melt(data_new)

## Using sample, group, subject as id variables

colnames(data_new) = c("sample","group","subject", "gene","expression")

head(data_new)

##            sample    group      subject   gene expression
## 1 TCGA.CV.6933.01    Tumor TCGA.CV.6933 S100A9   17.30560
## 2 TCGA.CV.6933.11 Nontumor TCGA.CV.6933 S100A9   10.83050
## 3 TCGA.CV.6934.01    Tumor TCGA.CV.6934 S100A9   13.57274
## 4 TCGA.CV.6934.11 Nontumor TCGA.CV.6934 S100A9   16.36757
## 5 TCGA.CV.6935.01    Tumor TCGA.CV.6935 S100A9   12.29116
## 6 TCGA.CV.6935.11 Nontumor TCGA.CV.6935 S100A9   20.22816

加载绘图函数

代码语言:javascript
复制
## 3. 这里加载包装好的2个函数,用于后面的统计和绘图
source("./assist/Function_for_violin_plot.R")

计算均值和误差

代码语言:javascript
复制
## 4. 绘图
# 4.1 这里注意到原图用的是误差线,这里用步骤三加载的函数,计算一下误差信息
Data_summary <- summarySE(data_new, measurevar="expression", groupvars=c("group","gene"))
head(Data_summary)

##      group   gene  N expression        sd        se        ci
## 1 Nontumor S100A9 43   18.02898 2.8049172 0.4277459 0.8632261
## 2 Nontumor MT.CO2 43   17.76159 0.8913531 0.1359301 0.2743180
## 3 Nontumor MT.CO3 43   18.18671 0.9300174 0.1418263 0.2862171
## 4 Nontumor MT.CO1 43   19.27698 1.0075457 0.1536493 0.3100768
## 5 Nontumor  KRT16 43   15.84541 3.5569291 0.5424266 1.0946612
## 6 Nontumor S100A8 43   17.17403 3.4525920 0.5265153 1.0625510

绘制分半小提琴图

代码语言:javascript
复制
# 4.2. 出图
  # 这个是我自己写的一个ggplot2的主题,可以自定义修改其中的参数
if(T){
  mytheme <- theme(plot.title = element_text(size = 12,color="black",hjust = 0.5),
                       axis.title = element_text(size = 12,color ="black"), 
                       axis.text = element_text(size= 12,color = "black"),
                       panel.grid.minor.y = element_blank(),
                       panel.grid.minor.x = element_blank(),
                       axis.text.x = element_text(angle = 45, hjust = 1 ),
                       panel.grid=element_blank(),
                       legend.position = "top",
                       legend.text = element_text(size= 12),
                       legend.title= element_text(size= 12)
) 
}

  # 自行调整下面的参数
gene_split_violin <- ggplot(data_new,aes(x= gene,y= expression,fill= group))+
  geom_split_violin(trim= F,color="white",scale = "area") + #绘制分半的小提琴图
  geom_point(data = Data_summary,aes(x= gene, y= expression),pch=19,
             position=position_dodge(0.5),size= 1)+ #绘制均值为点图
  geom_errorbar(data = Data_summary,aes(ymin = expression-ci, ymax= expression+ci), 
                width= 0.05, 
                position= position_dodge(0.5), 
                color="black",
                alpha = 0.8,
                size= 0.5) +
  scale_fill_manual(values = c("#56B4E9", "#E69F00"))+ 
  labs(y=("Log2 expression"),x=NULL,title = "Split violin") + 
  theme_bw()+ mytheme +
  stat_compare_means(aes(group = group),
                     label = "p.signif",
                     method = "anova",
                     label.y = max(data_new$expression),
                      hide.ns = T)
gene_split_violin;ggsave(gene_split_violin,
                         filename = "./Output/gene_split_violin.pdf",
                         height = 10,width = 16,units = "cm")

用ESTIMATE算法计算免疫得分

代码语言:javascript
复制
library(estimate)

# eestimate 包安装
# library(utils)
# rforge <- "http://r-forge.r-project.org"
# install.packages("estimate", repos=rforge, dependencies=TRUE)

# 5. ESTIMATE计算免疫得分
# 5.1 输入txt格式的表达矩阵,输出ESIMATE计算结果
filterCommonGenes(input.f= "./Rawdata/TCGA_HNSCpaired_Norexpr_data_paired.tsv", 
                  output.f="./Output/TCGA_estimate.gct", id="GeneSymbol")

## [1] "Merged dataset includes 9219 genes (1193 mismatched)."

estimateScore(input.ds = "./Output/TCGA_estimate.gct",
              output.ds = "./Output/TCGA_estimate_score.gct", 
              platform="illumina")

## [1] "1 gene set: StromalSignature  overlap= 135"
## [1] "2 gene set: ImmuneSignature  overlap= 139"

ESTI_score <- read.table("./Output/TCGA_estimate_score.gct",skip = 2,header = T,row.names = 1)
ESTI_score <- as.data.frame(t(ESTI_score[2:ncol(ESTI_score)]))
head(ESTI_score)

##                 StromalScore ImmuneScore ESTIMATEScore
## TCGA.CV.6943.01     906.2923  1649.01369    2555.30599
## TCGA.CV.6959.01    -352.6656   318.22117     -34.44448
## TCGA.CV.7438.11   -1183.4705   276.89782    -906.57268
## TCGA.CV.7242.11   -1067.1461   -47.83809   -1114.98415
## TCGA.CV.7432.01   -1234.5253  -449.47317   -1683.99846
## TCGA.CV.6939.11     424.8381  -674.84391    -250.00579

# 5.2 融合数据
table(row.names(ESTI_score) == rownames(phenotype))

## 
## TRUE 
##   86

ESTI_score$group <- phenotype$group
ESTI_score$sample <- rownames(ESTI_score)

ESTI_score_New =  melt(ESTI_score)

## Using group, sample as id variables

colnames(ESTI_score_New)=c("group","sample","status","score")  #设置行名
head(ESTI_score_New)

##      group          sample       status      score
## 1    Tumor TCGA.CV.6943.01 StromalScore   906.2923
## 2    Tumor TCGA.CV.6959.01 StromalScore  -352.6656
## 3 Nontumor TCGA.CV.7438.11 StromalScore -1183.4705
## 4 Nontumor TCGA.CV.7242.11 StromalScore -1067.1461
## 5    Tumor TCGA.CV.7432.01 StromalScore -1234.5253
## 6 Nontumor TCGA.CV.6939.11 StromalScore   424.8381

# 5.3 计算误差线
ESTI_Data_summary <- summarySE(ESTI_score_New, measurevar="score", groupvars=c("group","status"))
head(ESTI_Data_summary)

##      group        status  N       score        sd        se       ci
## 1 Nontumor  StromalScore 43  -918.91119  837.0492 127.64881 257.6057
## 2 Nontumor   ImmuneScore 43  -210.02121  504.0363  76.86481 155.1195
## 3 Nontumor ESTIMATEScore 43 -1128.93240 1138.1268 173.56271 350.2637
## 4    Tumor  StromalScore 43  -517.35577  659.5859 100.58590 202.9906
## 5    Tumor   ImmuneScore 43   -67.37634  638.1790  97.32139 196.4025
## 6    Tumor ESTIMATEScore 43  -584.73211 1138.8398 173.67145 350.4832

ESTI_split_violin <- ggplot(ESTI_score_New,aes(x= status,y= score,fill= group))+
  geom_split_violin(trim= F,color="white",scale = "area") + #绘制分半的小提琴图
  geom_point(data = ESTI_Data_summary,aes(x= status, y= score),pch=19,
             position=position_dodge(0.4),size= 1)+ #绘制均值为点图
  geom_errorbar(data = ESTI_Data_summary,aes(ymin = score-ci, ymax= score+ci), 
                width= 0.05, 
                position= position_dodge(0.4), 
                color="black",
                alpha = 0.8,
                size= 0.5) +
  scale_fill_manual(values = c("#56B4E9", "#E69F00"))+ 
  labs(y=("ESTIMATE score"),x=NULL,title = "Split violin") + 
  theme_bw()+ mytheme +
  scale_x_discrete(labels=c("Stromal","Immune","ESTIMATE")) +
  stat_compare_means(aes(group = group),
                     label = "p.signif",
                     method = "wilcox",
                     label.y = max(ESTI_score_New$score),
                      hide.ns = T)
ESTI_split_violin; ggsave(ESTI_split_violin,filename = "./Output/ESTIMATE_plot.pdf", height = 10,width = 10,units = "cm")
代码语言:javascript
复制
sessionInfo()

## R version 4.0.2 (2020-06-22)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 14393)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=Chinese (Simplified)_China.936  LC_CTYPE=Chinese (Simplified)_China.936   
## [3] LC_MONETARY=Chinese (Simplified)_China.936 LC_NUMERIC=C                              
## [5] LC_TIME=Chinese (Simplified)_China.936    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] ImageGP_0.1.0   devtools_2.3.0  usethis_1.6.1   dplyr_1.0.0     ggpubr_0.4.0   
## [6] estimate_1.0.13 plyr_1.8.6      reshape2_1.4.4  ggplot2_3.3.2  
## 
## loaded via a namespace (and not attached):
##  [1] matrixStats_0.56.0   fs_1.4.2             RColorBrewer_1.1-2   rprojroot_1.3-2     
##  [5] rstan_2.21.1         tools_4.0.2          backports_1.1.7      R6_2.4.1            
##  [9] colorspace_1.4-1     withr_2.2.0          tidyselect_1.1.0     gridExtra_2.3       
## [13] prettyunits_1.1.1    processx_3.4.3       curl_4.3             compiler_4.0.2      
## [17] git2r_0.27.1         cli_2.0.2            desc_1.2.0           labeling_0.3        
## [21] scales_1.1.1         callr_3.4.3          stringr_1.4.0        digest_0.6.25       
## [25] StanHeaders_2.21.0-5 foreign_0.8-80       rmarkdown_2.3        rio_0.5.16          
## [29] htmltools_0.5.1.1    pkgconfig_2.0.3      sessioninfo_1.1.1    rlang_0.4.6         
## [33] readxl_1.3.1         rstudioapi_0.11      farver_2.0.3         generics_0.1.0      
## [37] jsonlite_1.7.0       zip_2.1.1            car_3.0-8            inline_0.3.15       
## [41] magrittr_1.5         loo_2.3.1            Rcpp_1.0.5           munsell_0.5.0       
## [45] fansi_0.4.1          abind_1.4-5          lifecycle_0.2.0      stringi_1.4.6       
## [49] yaml_2.2.1           carData_3.0-4        pkgbuild_1.1.0       grid_4.0.2          
## [53] parallel_4.0.2       forcats_0.5.0        crayon_1.3.4         haven_2.3.1         
## [57] hms_0.5.3            knitr_1.29           ps_1.3.3             pillar_1.4.6        
## [61] ggsignif_0.6.0       codetools_0.2-16     stats4_4.0.2         pkgload_1.1.0       
## [65] glue_1.4.1           evaluate_0.14        V8_3.2.0             data.table_1.14.0   
## [69] remotes_2.1.1        BiocManager_1.30.10  RcppParallel_5.0.2   vctrs_0.3.1         
## [73] testthat_2.3.2       cellranger_1.1.0     gtable_0.3.0         purrr_0.3.4         
## [77] tidyr_1.1.0          assertthat_0.2.1     xfun_0.15            openxlsx_4.1.5      
## [81] broom_0.7.0          rstatix_0.6.0        tibble_3.0.2         pheatmap_1.0.12     
## [85] memoise_1.1.0        ellipsis_0.3.1

参考资料:

  1. 《数据可视化——R语言ggplot2包绘制精美的小提琴图》
  2. 数据和代码下载: https://gitee.com/ct5869/shengxin-baodian/tree/master/TCGA
  3. 作者:赵法明 编辑:生信宝典
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-04-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信宝典 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 读入Deseq2标准化后的表达数据
  • 绘图数据的格式准备
  • 加载绘图函数
  • 计算均值和误差
  • 绘制分半小提琴图
  • 用ESTIMATE算法计算免疫得分
  • 参考资料:
相关产品与服务
图数据库 KonisGraph
图数据库 KonisGraph(TencentDB for KonisGraph)是一种云端图数据库服务,基于腾讯在海量图数据上的实践经验,提供一站式海量图数据存储、管理、实时查询、计算、可视化分析能力;KonisGraph 支持属性图模型和 TinkerPop Gremlin 查询语言,能够帮助用户快速完成对图数据的建模、查询和可视化分析。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档