前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >LeetCode 0310 - Minimum Height Trees

LeetCode 0310 - Minimum Height Trees

作者头像
Reck Zhang
发布2021-08-11 11:14:41
3920
发布2021-08-11 11:14:41
举报
文章被收录于专栏:Reck Zhang

Minimum Height Trees

Desicription

For an undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format

The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example 1 :

代码语言:javascript
复制

Input: n = 4, edges = [[1, 0], [1, 2], [1, 3]]

        0
        |
        1
       / \
      2   3 

Output: [1]

Example 2 :

代码语言:javascript
复制

Input: n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

     0  1  2
      \ | /
        3
        |
        4
        |
        5 

Output: [3, 4]

Note:

  • According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
  • The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.

Solution

代码语言:javascript
复制
class Solution {
public:
    std::vector<int> findMinHeightTrees(int n, std::vector<std::vector<int>>& edges) {
        auto graph = std::unordered_map<int, std::unordered_set<int>>();
        for(const auto& edge : edges) {
            graph[edge[0]].insert(edge[1]);
            graph[edge[1]].insert(edge[0]);
        }

        auto leaf = std::queue<int>();
        for(const auto& point : graph) {
            if(point.second.size() == 1) {
                leaf.push(point.first);
            }
        }
        while(graph.size() > 2) {

            auto leafCount = leaf.size();
            while(leafCount--) {
                const auto point = leaf.front();
                leaf.pop();

                graph[*graph[point].begin()].erase(point);
                if(graph[*graph[point].begin()].size() == 1) {
                    leaf.push(*graph[point].begin());
                }
                graph.erase(point);
            }
        }

        auto res = std::vector<int>();
        for(const auto& point : graph) {
            res.push_back(point.first);
        }

        return res.empty() ? std::vector<int>{0} : res;
    }
};
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019-05-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Minimum Height Trees
    • Desicription
      • Solution
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档