前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >用树莓派构建 Kubernetes 集群

用树莓派构建 Kubernetes 集群

作者头像
用户1880875
修改于 2021-10-11 06:33:50
修改于 2021-10-11 06:33:50
794011
代码可运行
举报
运行总次数:11
代码可运行

Kubernetes 从一开始就被设计为云原生的企业级容器编排系统。它已经成长为事实上的云容器平台,并由于接受了容器原生虚拟化无服务器计算等新技术而继续发展。

从微型的边缘计算到大规模的容器环境,无论是公有云还是私有云环境,Kubernetes 都可以管理其中的容器。它是“家庭私有云”项目的理想选择,既提供了强大的容器编排,又让你有机会了解一项这样的技术 —— 它的需求如此之大,与云计算结合得如此彻底,以至于它的名字几乎就是“云计算”的代名词。

没有什么比 Kubernetes 更懂“云”,也没有什么能比树莓派更合适“集群起来”!在廉价的树莓派硬件上运行本地的 Kubernetes 集群是获得在真正的云技术巨头上进行管理和开发的经验的好方法。

在树莓派上安装 Kubernetes 集群

本练习将在三个或更多运行 Ubuntu 20.04 的树莓派 4 上安装 Kubernetes 1.18.2 集群。Ubuntu 20.04(Focal Fossa)提供了针对 64 位 ARM(ARM64)的树莓派镜像(64 位内核和用户空间)。由于目标是使用这些树莓派来运行 Kubernetes 集群,因此运行 AArch64 容器镜像的能力非常重要:很难找到 32 位的通用软件镜像乃至于标准基础镜像。借助 Ubuntu 20.04 的 ARM64 镜像,可以让你在 Kubernetes 上使用 64 位容器镜像。

AArch64 vs. ARM64;32 位 vs. 64 位;ARM vs. x86

请注意,AArch64 和 ARM64 实际上是同一种东西。不同的名称源于它们在不同社区中的使用。许多容器镜像都标为 AArch64,并能在标为 ARM64 的系统上正常运行。采用 AArch64/ARM64 架构的系统也能够运行 32 位的 ARM 镜像,但反之则不然:32 位的 ARM 系统无法运行 64 位的容器镜像。这就是 Ubuntu 20.04 ARM64 镜像如此有用的原因。

这里不会太深入地解释不同的架构类型,值得注意的是,ARM64/AArch64 和 x86_64 架构是不同的,运行在 64 位 ARM 架构上的 Kubernetes 节点无法运行为 x86_64 构建的容器镜像。在实践中,你会发现有些镜像没有为两种架构构建,这些镜像可能无法在你的集群中使用。你还需要在基于 Arch64 的系统上构建自己的镜像,或者跳过一些限制以让你的常规的 x86_64 系统构建 Arch64 镜像。在“家庭私有云”项目的后续文章中,我将介绍如何在常规系统上构建 AArch64 镜像。

为了达到两全其美的效果,在本教程中设置好 Kubernetes 集群后,你可以在以后向其中添加 x86_64 节点。你可以通过使用 Kubernetes 的 污点(taint) 和 容忍(toleration) 能力,由 Kubernetes 的调度器将给定架构的镜像调度到相应的节点上运行。

关于架构和镜像的内容就不多说了。是时候安装 Kubernetes 了,开始吧!

前置需求

这个练习的要求很低。你将需要:

  • 三台(或更多)树莓派 4(最好是 4GB 内存的型号)。
  • 在全部树莓派上安装 Ubuntu 20.04 ARM64。

为了简化初始设置,请阅读《修改磁盘镜像来创建基于树莓派的家庭实验室》,在将 Ubuntu 镜像写入 SD 卡并安装在树莓派上之前,添加一个用户和 SSH 授权密钥(authorized_keys)。

配置主机

在 Ubuntu 被安装在树莓派上,并且可以通过 SSH 访问后,你需要在安装 Kubernetes 之前做一些修改。

安装和配置 Docker

截至目前,Ubuntu 20.04 在 base 软件库中提供了最新版本的 Docker,即 v19.03,可以直接使用 apt 命令安装它。请注意,包名是 docker.io。请在所有的树莓派上安装 Docker:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 安装 docker.io 软件包
$ sudo apt install -y docker.io

安装好软件包后,你需要做一些修改来启用 cgroup(控制组)。cgroup 允许 Linux 内核限制和隔离资源。实际上,这可以让 Kubernetes 更好地管理其运行的容器所使用的资源,并通过让容器彼此隔离来增加安全性。

在对所有树莓派进行以下修改之前,请检查 docker info 的输出:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 检查 `docker info`
# 省略了某些输出
$ sudo docker info
(...)
 Cgroup Driver: cgroups
(...)
WARNING: No memory limit support
WARNING: No swap limit support
WARNING: No kernel memory limit support
WARNING: No kernel memory TCP limit support
WARNING: No oom kill disable support

上面的输出突出显示了需要修改的部分:cgroup 驱动和限制支持。

首先,将 Docker 使用的默认 cgroup 驱动从 cgroups 改为 systemd,让 systemd 充当 cgroup 管理器,确保只有一个 cgroup 管理器在使用。这有助于系统的稳定性,这也是 Kubernetes 所推荐的。要做到这一点,请创建 /etc/docker/daemon.json 文件或将内容替换为:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 创建或替换 /etc/docker/daemon.json 以启用 cgroup 的 systemd 驱动

$ sudo cat > /etc/docker/daemon.json <<EOF
{
  "exec-opts": ["native.cgroupdriver=systemd"],
  "log-driver": "json-file",
  "log-opts": {
    "max-size": "100m"
  },
  "storage-driver": "overlay2"
}
EOF

启用 cgroup 限制支持

接下来,启用限制支持,如上面的 docker info 输出中的警告所示。你需要修改内核命令行以在引导时启用这些选项。对于树莓派 4,将以下内容添加到 /boot/firmware/cmdline.txt 文件中:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
cgroup_enable=cpuset
cgroup_enable=memory
cgroup_memory=1
swapaccount=1

确保它们被添加到 cmdline.txt 文件的行末。这可以通过使用 sed 在一行中完成。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 将 cgroup 和交换选项添加到内核命令行中
# 请注意 "cgroup_enable=cpuset" 前的空格,以便在该行的最后一个项目后添加一个空格
$ sudo sed -i '$ s/$/ cgroup_enable=cpuset cgroup_enable=memory cgroup_memory=1 swapaccount=1/' /boot/firmware/cmdline.txt

sed 命令匹配该行的终止符(由第一个 $ 代表),用列出的选项代替它(它实际上是将选项附加到该行)。

有了这些改变,Docker 和内核应该按照 Kubernetes 的需要配置好了。重新启动树莓派,当它们重新启动后,再次检查 docker info 的输出。现在,Cgroups driver 变成了 systemd,警告也消失了。

允许 iptables 查看桥接流量

根据文档,Kubernetes 需要配置 iptables 来查看桥接网络流量。你可以通过修改 sysctl 配置来实现。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 启用 net.bridge.bridge-nf-call-iptables 和 -iptables6
cat <<EOF | sudo tee /etc/sysctl.d/k8s.conf
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF
$ sudo sysctl --system

安装 Ubuntu 的 Kubernetes 包

由于你使用的是 Ubuntu,你可以从 Kubernetes.io 的 apt 仓库中安装 Kubernetes 软件包。目前没有 Ubuntu 20.04(Focal)的仓库,但最近的 Ubuntu LTS 仓库 Ubuntu 18.04(Xenial) 中有 Kubernetes 1.18.2。最新的 Kubernetes 软件包可以从那里安装。

将 Kubernetes 软件库添加到 Ubuntu 的源列表之中:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 添加 packages.cloud.google.com 的 atp 密钥
$ curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -

# 添加 Kubernetes 软件库
cat <<EOF | sudo tee /etc/apt/sources.list.d/kubernetes.list
deb https://apt.kubernetes.io/ kubernetes-xenial main
EOF

当 Kubernetes 添加了 Ubuntu 20.04(Focal)仓库时 —— 也许是在下一个 Kubernetes 版本发布时 —— 请确保切换到它。

将仓库添加到源列表后,安装三个必要的 Kubernetes 包:kubelet、kubeadm 和 kubectl:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 更新 apt 缓存并安装 kubelet、kubeadm kubectl
# (输出略)
$ sudo apt update &amp;&amp; sudo apt install -y kubelet kubeadm kubectl

最后,使用 apt-mark hold 命令禁用这三个包的定期更新。升级到 Kubernetes 需要比一般的更新过程更多的手工操作,需要人工关注。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 禁止(标记为保持)Kubernetes 软件包的更新
$ sudo apt-mark hold kubelet kubeadm kubectl
kubelet set on hold.
kubeadm set on hold.
kubectl set on hold.

主机配置就到这里了! 现在你可以继续设置 Kubernetes 本身了。

创建 Kubernetes 集群

在安装了 Kubernetes 软件包之后,你现在可以继续创建集群了。在开始之前,你需要做一些决定。首先,其中一个树莓派需要被指定为控制平面节点(即主节点)。其余的节点将被指定为计算节点。

你还需要选择一个 CIDR(无类别域间路由)地址用于 Kubernetes 集群中的 Pod。在集群创建过程中设置 pod-network-cidr 可以确保设置了 podCIDR 值,它以后可以被 容器网络接口(Container Network Interface)(CNI)加载项使用。本练习使用的是 FlannelCNI。你选择的 CIDR 不应该与你的家庭网络中当前使用的任何 CIDR 重叠,也不应该与你的路由器或 DHCP 服务器管理的 CIDR 重叠。确保使用一个比你预期需要的更大的子网:总是有比你最初计划的更多的 Pod!在这个例子中,我将使用 CIDR 地址 10.244.0.0/16,但你可以选择一个适合你的。

有了这些决定,你就可以初始化控制平面节点了。用 SSH 或其他方式登录到你为控制平面指定的节点。

初始化控制平面

Kubernetes 使用一个引导令牌来验证被加入集群的节点。当初始化控制平面节点时,需要将此令牌传递给 kubeadm init 命令。用 kubeadm token generate 命令生成一个令牌:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 生成一个引导令牌来验证加入集群的节点
$ TOKEN=$(sudo kubeadm token generate)
$ echo $TOKEN
d584xg.xupvwv7wllcpmwjy

现在你可以使用 kubeadm init 命令来初始化控制平面了:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 初始化控制平面
#(输出略)
$ sudo kubeadm init --token=${TOKEN} --kubernetes-version=v1.18.2 --pod-network-cidr=10.244.0.0/16

如果一切顺利,你应该在输出的最后看到类似这样的东西:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
Your Kubernetes control-plane has initialized successfully!

To start using your cluster, you need to run the following as a regular user:

  mkdir -p $HOME/.kube
  sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
  sudo chown $(id -u):$(id -g) $HOME/.kube/config

You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
  https://kubernetes.io/docs/concepts/cluster-administration/addons/

Then you can join any number of worker nodes by running the following on each as root:

kubeadm join 192.168.2.114:6443 --token zqqoy7.9oi8dpkfmqkop2p5 \
    --discovery-token-ca-cert-hash sha256:71270ea137214422221319c1bdb9ba6d4b76abfa2506753703ed654a90c4982b

注意两点:第一,Kubernetes 的 kubectl 连接信息已经写入到 /etc/kubernetes/admin.conf。这个 kubeconfig 文件可以复制到用户的 ~/.kube/config 中,可以是主节点上的 root 用户或普通用户,也可以是远程机器。这样你就可以用 kubectl 命令来控制你的集群。

其次,输出中以 kubernetes join 开头的最后一行是你可以运行的命令,你可以运行这些命令加入更多的节点到集群中。

将新的 kubeconfig 复制到你的用户可以使用的地方后,你可以用 kubectl get nodes 命令来验证控制平面是否已经安装:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 显示 Kubernetes 集群中的节点
# 你的节点名称会有所不同
$ kubectl get nodes
NAME         STATUS   ROLES    AGE     VERSION
elderberry   Ready    master   7m32s   v1.18.2

安装 CNI 加载项

CNI 加载项负责 Pod 网络的配置和清理。如前所述,这个练习使用的是 Flannel CNI 加载项,在已经设置好 podCIDR 值的情况下,你只需下载 Flannel YAML 并使用 kubectl apply 将其安装到集群中。这可以用 kubectl apply -f - 从标准输入中获取数据,用一行命令完成。这将创建管理 Pod 网络所需的 ClusterRoles、ServiceAccounts 和 DaemonSets 等。

下载并应用 Flannel YAML 数据到集群中:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 下载 Flannel YAML 数据并应用它
# (输出略)
$ curl -sSL https://raw.githubusercontent.com/coreos/flannel/v0.12.0/Documentation/kube-flannel.yml | kubectl apply -f -

将计算节点加入到集群中

有了 CNI 加载项,现在是时候将计算节点添加到集群中了。加入计算节点只需运行 kube init 命令末尾提供的 kubeadm join 命令来初始化控制平面节点。对于你想加入集群的其他树莓派,登录主机,运行命令即可:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 加入节点到集群,你的令牌和 ca-cert-hash 应各有不同
$ sudo kubeadm join 192.168.2.114:6443 --token zqqoy7.9oi8dpkfmqkop2p5 \
    --discovery-token-ca-cert-hash sha256:71270ea137214422221319c1bdb9ba6d4b76abfa2506753703ed654a90c4982b

一旦你完成了每个节点的加入,你应该能够在 kubectl get nodes 的输出中看到新节点:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 显示 Kubernetes 集群中的节点
# 你的节点名称会有所不同
$ kubectl get nodes
NAME         STATUS   ROLES    AGE     VERSION
elderberry   Ready    master   7m32s   v1.18.2
gooseberry    Ready    &lt;none&gt;   2m39s   v1.18.2
huckleberry   Ready    &lt;none&gt;   17s     v1.18.2

验证集群

此时,你已经拥有了一个完全正常工作的 Kubernetes 集群。你可以运行 Pod、创建部署和作业等。你可以使用服务从集群中的任何一个节点访问集群中运行的应用程序。你可以通过 NodePort 服务或入口控制器实现外部访问。

要验证集群正在运行,请创建一个新的命名空间、部署和服务,并检查在部署中运行的 Pod 是否按预期响应。此部署使用 quay.io/clcollins/kube-verify:01 镜像,这是一个监听请求的 Nginx 容器(实际上,与文章《使用 Cloud-init 将节点添加到你的私有云》中使用的镜像相同)。你可以在这里查看镜像的容器文件。

为部署创建一个名为 kube-verify 的命名空间:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 创建一个新的命名空间
$ kubectl create namespace kube-verify
# 列出命名空间
$ kubectl get namespaces
NAME              STATUS   AGE
default           Active   63m
kube-node-lease   Active   63m
kube-public       Active   63m
kube-system       Active   63m
kube-verify       Active   19s

现在,在新的命名空间创建一个部署:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 创建一个新的部署
$ cat <<EOF | kubectl create -f -
apiVersion: apps/v1
kind: Deployment
metadata:
  name: kube-verify
  namespace: kube-verify
  labels:
    app: kube-verify
spec:
  replicas: 3
  selector:
    matchLabels:
      app: kube-verify
  template:
    metadata:
      labels:
        app: kube-verify
    spec:
      containers:
      - name: nginx
        image: quay.io/clcollins/kube-verify:01
        ports:
        - containerPort: 8080
EOF
deployment.apps/kube-verify created

Kubernetes 现在将开始创建部署,它由三个 Pod 组成,每个 Pod 都运行 quay.io/clcollins/kube-verify:01 镜像。一分钟左右后,新的 Pod 应该运行了,你可以用 kubectl get all -n kube-verify 来查看它们,以列出新命名空间中创建的所有资源:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 检查由该部署创建的资源
$ kubectl get all -n kube-verify
NAME                               READY   STATUS              RESTARTS   AGE
pod/kube-verify-5f976b5474-25p5r   0/1     Running             0          46s
pod/kube-verify-5f976b5474-sc7zd   1/1     Running             0          46s
pod/kube-verify-5f976b5474-tvl7w   1/1     Running             0          46s

NAME                          READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/kube-verify   3/3     3            3           47s

NAME                                     DESIRED   CURRENT   READY   AGE
replicaset.apps/kube-verify-5f976b5474   3         3         3       47s

你可以看到新的部署、由部署创建的复制子集,以及由复制子集创建的三个 Pod,以满足部署中的 replicas: 3 的要求。你可以看到 Kubernetes 内部工作正常。

现在,创建一个服务来暴露在三个 Pod 中运行的 Nginx “应用程序”(在本例中是“欢迎”页面)。这将作为一个单一端点,你可以通过它连接到 Pod:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 为该部署创建服务
$ cat <<EOF | kubectl create -f -
apiVersion: v1
kind: Service
metadata:
  name: kube-verify
  namespace: kube-verify
spec:
  selector:
    app: kube-verify
  ports:
    - protocol: TCP
      port: 80
      targetPort: 8080
EOF
service/kube-verify created

创建服务后,你可以对其进行检查并获取新服务的 IP 地址:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 检查新服务
$ kubectl get -n kube-verify service/kube-verify
NAME          TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)   AGE
kube-verify   ClusterIP   10.98.188.200   &lt;none&gt;        80/TCP    30s

你可以看到 kube-verify 服务已经被分配了一个 ClusterIP(仅对集群内部)10.98.188.200。这个 IP 可以从你的任何节点到达,但不能从集群外部到达。你可以通过在这个 IP 上连接到部署内部的容器来验证它们是否在工作:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 使用 curl 连接到 ClusterIP:
# (简洁期间,输出有删节)
$ curl 10.98.188.200
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

成功了!你的服务正在运行,容器内的 Nginx 正在响应你的请求。你的服务正在运行,容器内的 Nginx 正在响应你的请求。

此时,你的树莓派上有一个正在运行的 Kubernetes 集群,安装了一个 CNI 加载项(Flannel),并有一个运行 Nginx Web 服务器的测试部署和服务。在大型公有云中,Kubernetes 有不同的入口控制器来与不同的解决方案交互,比如最近报道的 Skipper 项目。同样,私有云也有与硬件负载均衡器设备(如 F5 Networks 的负载均衡器)交互的入口控制器,或用于处理进入节点的流量的 Nginx 和 HAProxy 控制器。

在以后的文章中,我将通过安装自己的入口控制器来解决将集群中的服务暴露给外界的问题。我还将研究动态存储供应器和 StorageClasses,以便为应用程序分配持久性存储,包括利用你在上一篇文章《将树莓派家庭实验室变成网络文件系统》中设置的 NFS 服务器来为你的 Pod 创建按需存储。

去吧,Kubernetes

“Kubernetes”(κυβερνήτης)在希腊语中是飞行员的意思 —— 但这是否意味着驾驶船只以及引导船只的人?诶,不是。“Kubernan”(κυβερνάω)是希腊语“驾驶”或“引导”的意思,因此,去吧,Kubernan,如果你在会议上或其它什么活动上看到我,请试着给我一个动词或名词的通行证,以另一种语言 —— 我不会说的语言。

免责声明:如前所述,我不会读也不会讲希腊语,尤其是古希腊语,所以我选择相信我在网上读到的东西。你知道那是怎么一回事。我对此有所保留,放过我吧,因为我没有开“对我来说都是希腊语”这种玩笑。然而,只是提一下,虽然我可以开玩笑,但是实际上没有,所以我要么偷偷摸摸,要么聪明,要么两者兼而有之。或者,两者都不是。我并没有说这是个好笑话。

所以,去吧,像专业人员一样在你的家庭私有云中用自己的 Kubernetes 容器服务来试运行你的容器吧!当你越来越得心应手时,你可以修改你的 Kubernetes 集群,尝试不同的选项,比如前面提到的入口控制器和用于持久卷的动态 StorageClasses。

这种持续学习是 DevOps 的核心,持续集成和新服务交付反映了敏捷方法论,当我们学会了处理云实现的大规模扩容,并发现我们的传统做法无法跟上步伐时,我们就接受了这两种方法论。

你看,技术、策略、哲学、一小段希腊语和一个可怕的原始笑话,都汇聚在一篇文章当中。

本文系转载,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文系转载,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
2 条评论
热度
最新
工程购买连接有新的吗
工程购买连接有新的吗
回复回复点赞举报
工程购买链接怎么失效了
工程购买链接怎么失效了
回复回复点赞举报
推荐阅读
STM32-正弦波可调(50HZ~20KHZ可调、峰峰值0~3.3V可调)
1.原理: 通过定时器每隔一段时间触发一次DAC转换,然后通过DMA发送正玄波码表值给DAC. 当需要改变频率HZ时,只需要修改定时器频率即可(最高只能达到20KHz) 当需要改变正玄波的正峰峰值/负峰峰值时,只需要修改正玄波码表即可 2.实现 代码如下所示(采用的是定时器2,DAC引脚是PA4) #define HZ(x) (u16)(72000000/sizeof(Sine12bit)*2/x) //计算Hz #define DAC_DHR12R1 0x40007408 //外设DAC通道1的
诺谦
2018/04/17
2.9K1
STM32-正弦波可调(50HZ~20KHZ可调、峰峰值0~3.3V可调)
STM32 定时器触发 ADC 多通道采集,DMA搬运至内存
ADC 的功能是将模拟信号采样得到数字信号,而有些时候,我们需要使用到定时采样,比如在计算一个采集的波形的频率的时候,我们需要精确的知道采样频率,也就是 1 s 内采集的点数,这个时候,就需要使用到定时采集。定时采样有如下三种方法:
wenzid
2021/03/04
9K0
STM32 定时器触发 ADC 多通道采集,DMA搬运至内存
【安富莱二代示波器教程】第6章 示波器设计—双通道ADC驱动
本章节为大家讲解示波器的ADC驱动,采用STM32自带ADC实现。关于STM32F429的ADC,可以说处处有地雷,不小心就踩上了,如果简单的使用,不会发现,复杂使用就很容易踩到了。
Simon223
2018/09/04
1.1K0
【安富莱二代示波器教程】第6章 示波器设计—双通道ADC驱动
【STM32】PWM输出
PWM是“Pulse Width Modulation”的缩写,即脉冲宽度调制,简称脉宽调制。是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。简单来说,就是对脉冲宽度的控制。
DevFrank
2024/07/24
1720
【STM32】PWM输出
M-Arch(5)第四个示例:ADC&DMA
本文我们将总结下ADC和DMA的基本使用方法,并给出示例,从中我们可以看到GD和STM在设计上的差别。
滚神大人
2021/10/08
5630
开发者成长激励计划-基于TencentOS Tiny和ch32v307的三相多功能表方案
多功能电表是采集配电参数的主要设备,应用广泛。Modbus通讯在工业网络通讯中应用十分广泛,而且方便,受到大家的欢迎。
zes
2022/08/10
1.1K0
开发者成长激励计划-基于TencentOS Tiny和ch32v307的三相多功能表方案
(29)STM32——PWM DAC实验笔记
目录 学习目标 成果展示  介绍 简介 硬件 代码 总结  ---- 学习目标         本节内容讲解的是有关PWM转DAC的知识点,其实这种做法我们已经不陌生了,因为在学习51单片机的时候,DA也是通过PWM来实现的。51单片机——AD/DA转换,好了,接下来就让我们开始吧! 成果展示  https://live.csdn.net/v/embed/233690 PWM DAC 介绍 简介         PWM 本质上其实就是是一种周期一定,而高低电平占空比可调的方波。      
小点点
2022/12/12
9020
(29)STM32——PWM DAC实验笔记
STM8S——Analog/digital converter (ADC)
本文介绍了如何使用STM8S105F4单片机实现一个ADC1型的模拟数字转换器,通过硬件电路和软件程序的设计,实现电压信号的采集、处理和存储,并可通过指令控制ADC1的工作状态以及读取转换结果。
Christal_R
2017/12/25
1.8K0
stm32_DMA采集一个AD数据_并通过DMA向串口发送
这是以前学32的时候写的,那时候学了32之后感觉32真是太强大了,比51强的没影。关于dma网上有许多的资料,关于dma采集ad网上也有很多。亲们搜搜,这里只贴代码了,其实我也想详详细细地叙述一番,但
杨奉武
2018/04/18
1K0
stm32_DMA采集一个AD数据_并通过DMA向串口发送
STM32中AD采样的三种方法分析
在进行STM32F中AD采样的学习中,我们知道AD采样的方法有多种,按照逻辑程序处理有三种方式,一种是查询模式,一种是中断处理模式,一种是DMA模式。三种方法按照处理复杂方法DMA模式处理模式效率最高,其次是中断处理模式,最差是查询模式,相信很多学者在学习AD采样程序时,很多例程采用DMA模式,在这里我针对三种程序进行分别分析。
用户6754675
2020/07/08
1.4K0
stm32f103波形发生器_示波器波形分析
摘要
全栈程序员站长
2022/11/04
1.6K2
基于STM32F4单片机对步进电机的控制(有代码)「建议收藏」
步进电机是将电脉冲控制信号转变为角位移或线位移的一种常用的数字控制执行元件,又称为脉冲电机。在驱动电源的作用下,步进电机受到脉冲的控制,其转子的角位移量和速度严格地与输入脉冲的数量和脉冲频率成正比。步进电机每接收一个电脉冲,转子就转过一个相应的角度(步距角)。**改变通电顺序可改变步进电动机的旋转方向;改变通电频率可改变步进电动机的转速。**因此,通过控制输入电脉冲的数目、频率及电动机绕组的通电顺序就可以获得所需要的转角、转速及转向,利用单片机就可以很容易实现步进电机的开环数字控制。 传统的步进电机控制方法是由触发器产生控制脉冲来进行控制的,但此种控制方法工作方式单一而且难于实现人机交互,当步进电机的参数发生变化时,需要重新进行控制器的设计。因此适合于单片机控制,单片机通过向步进电机驱动电路发送控制信号就能实现对步进电机的控制。
全栈程序员站长
2022/08/23
8.6K2
基于STM32F4单片机对步进电机的控制(有代码)「建议收藏」
开发者成长激励计划-基于TencentOS Tiny的植物土壤湿度监测机
本次有幸参与开放原子开源基金会举办的开发者成长激励计划,植物土壤湿度监测机基于TencentOS Tiny CH32V_EVB RISC-V开发套件(采用WCH的RISC-V CH32V307VCT6 MCU)开发套件,外接WiFi模组及土壤湿度传感器监测植物生长环境湿度数据上传至云端,支持本地自动水泵运行,也可以通过腾讯云IoT实现云端手动控制水泵。
不爱吃胡萝卜
2022/08/11
7590
开发者成长激励计划-基于TencentOS Tiny的植物土壤湿度监测机
STM32单片机-输入捕获、FFT测频
​本内容介绍基于STM32F103VET6的一个实际工程中添加采集A相电压信号或B相电流信号频率的功能,分别通过输入捕获与FFT实现,均测试可用。持续更新,原创不易!
爱上电路设计
2024/05/28
2660
STM32单片机-输入捕获、FFT测频
2016TI杯——寻迹小车
B题:自动循迹小车 1.任务 设计制作一个自动循迹小车。小车采用一片 TI公司LDC1314或LDC1000电感数字转换器作为循迹传感器,在规定的平面跑道自动按顺时针方向循迹前进。跑道的标识为一根直径0.6~0.9mm的细铁丝,按照图1的示意尺寸,用透明胶带将其贴在跑道上。图中所有圆弧的半径均为为20cm±2cm。
全栈程序员站长
2022/06/26
6400
2016TI杯——寻迹小车
开发者成长激励计划-基于TencentOS Tiny 的物联网小车机械臂
随之物联网的发展,各类设备都能通过物联网进行控制,本次方案尝试了通过腾讯物联网平台实现设备控制设备的功能,使用了小型机械臂和小车进行测试,验证控制的物联网控制的实时性。机械臂由5个舵机实现5个自由度。小车由一个转向舵机和一个驱动电机组成。控制端采用WCH沁恒RISC-V TencentOS Tiny CH32V_EVB_AIoT RevB02开发套件负责读取电位器和姿态传感器数据并上传到云端,执行端由STM32L431RCT6控制器负责驱动电机和舵机。
海内天涯
2022/08/06
1.1K0
开发者成长激励计划-基于TencentOS Tiny 的物联网小车机械臂
STM32 BMP280模块 获取气压温度高度传感器数据
BMP280是博世最新推出的数字气压传感器,具有卓越的性能和低廉的价格,相对精度为±0.12 hPa(相当于±1米),传感器功耗仅有2.7μA,包括压力和温度测量功能。
CoderEnd
2023/05/07
9090
STM32 BMP280模块 获取气压温度高度传感器数据
2016年四川省TI杯电子设计竞赛B题
B题:自动循迹小车 1.任务 设计制作一个自动循迹小车。小车采用一片 TI公司LDC1314或LDC1000电感数字转换器作为循迹传感器,在规定的平面跑道自动按顺时针方向循迹前进。跑道的标识为一根直径0.6~0.9mm的细铁丝,按照图1的示意尺寸,用透明胶带将其贴在跑道上。图中所有圆弧的半径均为为20cm±2cm。
全栈程序员站长
2022/06/26
6850
2016年四川省TI杯电子设计竞赛B题
蓝桥杯嵌入式之光敏电阻、ADC*2讲解
Tr AO是光敏值的输出端,Tr DO是判断器LM393D的输出端,它是比较光敏电阻的电压和滑动变阻器电压的大小。
用户5935416
2019/08/01
1.3K0
蓝桥杯嵌入式之光敏电阻、ADC*2讲解
(35)STM32——红外遥控实验
https://blog.csdn.net/weixin_66578482/article/details/126141850        这一篇笔记对红外遥控进行了详细的介绍,感兴yxky'x'k 
小点点
2022/12/12
6740
推荐阅读
相关推荐
STM32-正弦波可调(50HZ~20KHZ可调、峰峰值0~3.3V可调)
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档