同一台计算机的进程通信称为 IPC(Inter-process communication) 不同计算机之间的进程通信,需要通过网络,并遵守共同的协议,例如 HTTP
单核 cpu 下,线程实际还是 串行执行
的。操作系统中有一个组件叫做任务调度器
,将 cpu 的时间片(windows下时间片最小约为 15 毫秒)分给不同的程序使用,只是由于 cpu 在线程间(时间片很短)的切换非常快,人类感觉是 同时运行的
。总结为一句话就是: 微观串行,宏观并行
,一般会将这种 线程轮流使用 CPU 的做法称为并发
, concurrent
多核 cpu
下,每个 核(core
) 都可以调度运行线程,这时候线程可以是并行的。
引用 Rob Pike 的一段描述:
并发(concurrent)是同一时间应对(dealing with)多件事情的能力 并行(parallel)是同一时间动手做(doing)多件事情的能力
例子
以调用方角度来讲,如果
多线程可以让方法执行变为异步的(即不要巴巴干等着)比如说读取磁盘文件时,假设读取操作花费了 5 秒钟,如果没有线程调度机制,这 5 秒 cpu 什么都做不了,其它代码都得暂停…
充分利用多核 cpu 的优势,提高运行效率。想象下面的场景,执行 3 个计算,最后将计算结果汇总。
计算 1 花费 10 ms 计算 2 花费 11 ms 计算 3 花费 9 ms 汇总需要 1 ms
注意
需要在多核 cpu 才能提高效率,单核仍然时是轮流执行
基准测试工具选择,使用了比较靠谱的 JMH
,它会执行程序预热,执行多次测试并平均
cpu
核数限制,有两种思路
msconfig
,分配合适的核,需要重启比较麻烦
并行计算方式的选择
parallel stream
,后来发现它有自己的问题thread
,实现简单的并行计算测试代码如下
mvn archetype:generate -DinteractiveMode=false -DarchetypeGroupId=org.openjdk.jmh -
DarchetypeArtifactId=jmh-java-benchmark-archetype -DgroupId=org.sample -DartifactId=test -
Dversion=1.0
package org.sample;
import java.util.Arrays;
import java.util.concurrent.FutureTask;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Fork;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.Warmup;
@Fork(1)
@BenchmarkMode(Mode.AverageTime)
@Warmup(iterations=3)
@Measurement(iterations=5)
public class MyBenchmark {
static int[] ARRAY = new int[1000_000_00];
static {
Arrays.fill(ARRAY, 1);
}
@Benchmark
public int c() throws Exception {
int[] array = ARRAY;
FutureTask<Integer> t1 = new FutureTask<>(()->{
int sum = 0;
for(int i = 0; i < 250_000_00;i++) {
sum += array[0+i];
}
return sum;
});
FutureTask<Integer> t2 = new FutureTask<>(()->{
int sum = 0;
for(int i = 0; i < 250_000_00;i++) {
sum += array[250_000_00+i];
}
return sum;
});
FutureTask<Integer> t3 = new FutureTask<>(()->{
int sum = 0;
for(int i = 0; i < 250_000_00;i++) {
sum += array[500_000_00+i];
}
return sum;
});
FutureTask<Integer> t4 = new FutureTask<>(()->{
int sum = 0;
for(int i = 0; i < 250_000_00;i++) {
sum += array[750_000_00+i];
}
return sum;
});
new Thread(t1).start();
new Thread(t2).start();
new Thread(t3).start();
new Thread(t4).start();
return t1.get() + t2.get() + t3.get()+ t4.get();
}
@Benchmark
public int d() throws Exception {
int[] array = ARRAY;
FutureTask<Integer> t1 = new FutureTask<>(()->{
int sum = 0;
for(int i = 0; i < 1000_000_00;i++) {
sum += array[0+i];
}
return sum;
});
new Thread(t1).start();
return t1.get();
}
}
双核 CPU(4个逻辑CPU)
C:\Users\lenovo\eclipse-workspace\test>java -jar target/benchmarks.jar
# VM invoker: C:\Program Files\Java\jdk-11\bin\java.exe
# VM options: <none>
# Warmup: 3 iterations, 1 s each
# Measurement: 5 iterations, 1 s each
# Threads: 1 thread, will synchronize iterations
# Benchmark mode: Average time, time/op
# Benchmark: org.sample.MyBenchmark.c
# Run progress: 0.00% complete, ETA 00:00:16
# Fork: 1 of 1
# Warmup Iteration 1: 0.022 s/op
# Warmup Iteration 2: 0.019 s/op
# Warmup Iteration 3: 0.020 s/op
Iteration 1: 0.020 s/op
Iteration 2: 0.020 s/op
Iteration 3: 0.020 s/op
Iteration 4: 0.020 s/op
Iteration 5: 0.020 s/op
Result: 0.020 ±(99.9%) 0.001 s/op [Average]
Statistics: (min, avg, max) = (0.020, 0.020, 0.020), stdev = 0.000
Confidence interval (99.9%): [0.019, 0.021]
# VM invoker: C:\Program Files\Java\jdk-11\bin\java.exe
# VM options: <none>
# Warmup: 3 iterations, 1 s each
# Measurement: 5 iterations, 1 s each
# Threads: 1 thread, will synchronize iterations
# Benchmark mode: Average time, time/op
# Benchmark: org.sample.MyBenchmark.d
# Run progress: 50.00% complete, ETA 00:00:10
# Fork: 1 of 1
# Warmup Iteration 1: 0.042 s/op
# Warmup Iteration 2: 0.042 s/op
# Warmup Iteration 3: 0.041 s/op
Iteration 1: 0.043 s/op
Iteration 2: 0.042 s/op
Iteration 3: 0.042 s/op
Iteration 4: 0.044 s/op
Iteration 5: 0.042 s/op
Result: 0.043 ±(99.9%) 0.003 s/op [Average]
Statistics: (min, avg, max) = (0.042, 0.043, 0.044), stdev = 0.001
Confidence interval (99.9%): [0.040, 0.045]
# Run complete. Total time: 00:00:20
Benchmark Mode Samples Score Score error Units
o.s.MyBenchmark.c avgt 5 0.020 0.001 s/op
o.s.MyBenchmark.d avgt 5 0.043 0.003 s/op
可以看到多核下,效率提升还是很明显的,快了一倍左右
单核 CPU
C:\Users\lenovo\eclipse-workspace\test>java -jar target/benchmarks.jar
# VM invoker: C:\Program Files\Java\jdk-11\bin\java.exe
# VM options: <none>
# Warmup: 3 iterations, 1 s each
# Measurement: 5 iterations, 1 s each
# Threads: 1 thread, will synchronize iterations
# Benchmark mode: Average time, time/op
# Benchmark: org.sample.MyBenchmark.c
# Run progress: 0.00% complete, ETA 00:00:16
# Fork: 1 of 1
# Warmup Iteration 1: 0.064 s/op
# Warmup Iteration 2: 0.052 s/op
# Warmup Iteration 3: 1.127 s/op
Iteration 1: 0.053 s/op
Iteration 2: 0.052 s/op
Iteration 3: 0.053 s/op
Iteration 4: 0.057 s/op
Iteration 5: 0.088 s/op
Result: 0.061 ±(99.9%) 0.060 s/op [Average]
Statistics: (min, avg, max) = (0.052, 0.061, 0.088), stdev = 0.016
Confidence interval (99.9%): [0.001, 0.121]
# VM invoker: C:\Program Files\Java\jdk-11\bin\java.exe
# VM options: <none>
# Warmup: 3 iterations, 1 s each
# Measurement: 5 iterations, 1 s each
# Threads: 1 thread, will synchronize iterations
# Benchmark mode: Average time, time/op
# Benchmark: org.sample.MyBenchmark.d
# Run progress: 50.00% complete, ETA 00:00:11
# Fork: 1 of 1
# Warmup Iteration 1: 0.054 s/op
# Warmup Iteration 2: 0.053 s/op
# Warmup Iteration 3: 0.051 s/op
Iteration 1: 0.096 s/op
Iteration 2: 0.054 s/op
Iteration 3: 0.065 s/op
Iteration 4: 0.050 s/op
Iteration 5: 0.055 s/op
Result: 0.064 ±(99.9%) 0.071 s/op [Average]
Statistics: (min, avg, max) = (0.050, 0.064, 0.096), stdev = 0.018
Confidence interval (99.9%): [-0.007, 0.135]
# Run complete. Total time: 00:00:22
Benchmark Mode Samples Score Score error Units
o.s.MyBenchmark.c avgt 5 0.061 0.060 s/op
o.s.MyBenchmark.d avgt 5 0.064 0.071 s/op
性能几乎是一样的
有些任务,经过精心设计,将任务拆分,并行执行,当然可以提高程序的运行效率。但不是所有计算任 务都能拆分 也不是所有任务都需要拆分,任务的目的如果不同,谈拆分和效率没啥意义