
ex3.m
%% Machine Learning Online Class - Exercise 3 | Part 1: One-vs-all
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% linear exercise. You will need to complete the following functions
% in this exericse:
%
% lrCostFunction.m (logistic regression cost function)
% oneVsAll.m
% predictOneVsAll.m
% predict.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% Setup the parameters you will use for this part of the exercise
input_layer_size = 400; % 20x20 Input Images of Digits
num_labels = 10; % 10 labels, from 1 to 10
% (note that we have mapped "0" to label 10)
%% =========== Part 1: Loading and Visualizing Data =============
% We start the exercise by first loading and visualizing the dataset.
% You will be working with a dataset that contains handwritten digits.
%
% Load Training Data
fprintf('Loading and Visualizing Data ...\n')
load('ex3data1.mat'); % training data stored in arrays X, y
m = size(X, 1);
% Randomly select 100 data points to display
rand_indices = randperm(m);
sel = X(rand_indices(1:100), :);
displayData(sel);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ============ Part 2a: Vectorize Logistic Regression ============
% In this part of the exercise, you will reuse your logistic regression
% code from the last exercise. You task here is to make sure that your
% regularized logistic regression implementation is vectorized. After
% that, you will implement one-vs-all classification for the handwritten
% digit dataset.
%
% Test case for lrCostFunction
fprintf('\nTesting lrCostFunction() with regularization');
theta_t = [-2; -1; 1; 2];
X_t = [ones(5,1) reshape(1:15,5,3)/10];
y_t = ([1;0;1;0;1] >= 0.5);
lambda_t = 3;
[J grad] = lrCostFunction(theta_t, X_t, y_t, lambda_t);
fprintf('\nCost: %f\n', J);
fprintf('Expected cost: 2.534819\n');
fprintf('Gradients:\n');
fprintf(' %f \n', grad);
fprintf('Expected gradients:\n');
fprintf(' 0.146561\n -0.548558\n 0.724722\n 1.398003\n');
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ============ Part 2b: One-vs-All Training ============
fprintf('\nTraining One-vs-All Logistic Regression...\n')
lambda = 0.1;
[all_theta] = oneVsAll(X, y, num_labels, lambda);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ================ Part 3: Predict for One-Vs-All ================
pred = predictOneVsAll(all_theta, X);
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
ex3_nn.m
%% Machine Learning Online Class - Exercise 3 | Part 2: Neural Networks
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% linear exercise. You will need to complete the following functions
% in this exericse:
%
% lrCostFunction.m (logistic regression cost function)
% oneVsAll.m
% predictOneVsAll.m
% predict.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% Setup the parameters you will use for this exercise
input_layer_size = 400; % 20x20 Input Images of Digits
hidden_layer_size = 25; % 25 hidden units
num_labels = 10; % 10 labels, from 1 to 10
% (note that we have mapped "0" to label 10)
%% =========== Part 1: Loading and Visualizing Data =============
% We start the exercise by first loading and visualizing the dataset.
% You will be working with a dataset that contains handwritten digits.
%
% Load Training Data
fprintf('Loading and Visualizing Data ...\n')
load('ex3data1.mat');
m = size(X, 1);
% Randomly select 100 data points to display
sel = randperm(size(X, 1));
sel = sel(1:100);
displayData(X(sel, :));
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ================ Part 2: Loading Pameters ================
% In this part of the exercise, we load some pre-initialized
% neural network parameters.
fprintf('\nLoading Saved Neural Network Parameters ...\n')
% Load the weights into variables Theta1 and Theta2
load('ex3weights.mat');
%% ================= Part 3: Implement Predict =================
% After training the neural network, we would like to use it to predict
% the labels. You will now implement the "predict" function to use the
% neural network to predict the labels of the training set. This lets
% you compute the training set accuracy.
pred = predict(Theta1, Theta2, X);
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
fprintf('Program paused. Press enter to continue.\n');
pause;
% To give you an idea of the network's output, you can also run
% through the examples one at the a time to see what it is predicting.
% Randomly permute examples
rp = randperm(m);
for i = 1:m
% Display
fprintf('\nDisplaying Example Image\n');
displayData(X(rp(i), :));
pred = predict(Theta1, Theta2, X(rp(i),:));
fprintf('\nNeural Network Prediction: %d (digit %d)\n', pred, mod(pred, 10));
% Pause with quit option
s = input('Paused - press enter to continue, q to exit:','s');
if s == 'q'
break
end
end








本文分享自 图像处理与模式识别研究所 微信公众号,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文参与 腾讯云自媒体同步曝光计划 ,欢迎热爱写作的你一起参与!