前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >最近几篇较好论文实现代码(附源代码下载)

最近几篇较好论文实现代码(附源代码下载)

作者头像
计算机视觉研究院
发布2022-06-09 13:41:34
3530
发布2022-06-09 13:41:34
举报
文章被收录于专栏:计算机视觉战队

关注并星标

从此不迷路

计算机视觉研究院

公众号ID|ComputerVisionGzq

学习群|扫码在主页获取加入方式

计算机视觉研究院专栏

作者:Edison_G

这个是”计算机视觉研究院“新推出的模块,后期我们会陆续为大家带来最新文章及技术的代码实现分享

  • 《Towards Layer-wise Image Vectorization》(CVPR 2022) 

GitHub: github.com/ma-xu/LIVE

Installation

We suggest users to use the conda for creating new python environment.

Requirement: 5.0<GCC<6.0; nvcc >10.0.

代码语言:javascript
复制
git clone git@github.com:ma-xu/LIVE.gitcd LIVEconda create -n live python=3.7conda activate liveconda install -y pytorch torchvision -c pytorchconda install -y numpy scikit-imageconda install -y -c anaconda cmakeconda install -y -c conda-forge ffmpegpip install svgwrite svgpathtools cssutils numba torch-tools scikit-fmm easydict visdompip install opencv-python==4.5.4.60  # please install this version to avoid segmentation fault.cd DiffVGgit submodule update --init --recursivepython setup.py installcd ..

Run Experiments

代码语言:javascript
复制
conda activate livecd LIVE# Please modify the paramters accordingly.python main.py --config <config.yaml> --experiment <experiment-setting> --signature <given-folder-name> --target <input-image> --log_dir <log-dir># Here is an simple example:python main.py --config config/base.yaml --experiment experiment_5x1 --signature smile --target figures/smile.png --log_dir log/
  • 《Multimodal Token Fusion for Vision Transformers》(CVPR 2022) 

GitHub: github.com/yikaiw/TokenFusion

  • 《PointAugmenting: Cross-Modal Augmentation for 3D Object  Detection》(CVPR 2022) 

GitHub: github.com/VISION-SJTU/PointAugmenting

  • 《Fantastic questions and where to find them: FairytaleQA -- An authentic dataset for narrative comprehension.》(ACL 2022)

GitHub: github.com/uci-soe/FairytaleQAData

  • 《LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks》(AAAI 2022)

GitHub: github.com/agoodge/LUNAR

Firstly, extract data.zip

To replicate the results on the HRSS dataset with neighbour count k = 100 and "Mixed" negative sampling scheme

  • Extract saved_models.zip
  • Run:
代码语言:javascript
复制
python3 main.py --dataset HRSS --samples MIXED --k 100

To train a new model:

代码语言:javascript
复制
python3 main.py --dataset HRSS --samples MIXED --k 100 --train_new_model
  • 《Pseudo-Label Transfer from Frame-Level to Note-Level in a Teacher-Student Framework for Singing Transcription from Polyphonic Music》(ICASSP 2022) 

GitHub: github.com/keums/icassp2022-vocal-transcription

  • 《Robust Disentangled Variational Speech Representation Learning for Zero-shot Voice Conversion》(ICASSP 2022) 

GitHub: github.com/jlian2/Robust-Voice-Style-Transfer

Demo:https://jlian2.github.io/Robust-Voice-Style-Transfer/

  • 《HandoverSim: A Simulation Framework and Benchmark for Human-to-Robot Object Handovers》(ICRA 2022) 

GitHub: github.com/NVlabs/handover-sim

代码语言:javascript
复制
2022-06-03 16:13:46: Running evaluation for results/2022-02-28_08-57-34_yang-icra2021_s0_test2022-06-03 16:13:47: Evaluation results:|  success rate   |    mean accum time (s)    |                    failure (%)                     ||      (%)        |  exec  |  plan  |  total  |  hand contact   |   object drop   |    timeout     ||:---------------:|:------:|:------:|:-------:|:---------------:|:---------------:|:--------------:|| 64.58 ( 93/144) | 4.864  | 0.036  |  4.900  | 17.36 ( 25/144) | 11.81 ( 17/144) | 6.25 (  9/144) |2022-06-03 16:13:47: Printing scene ids2022-06-03 16:13:47: Success (93 scenes):---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  0    1    2    3    4    5    6    7    8    9   10   12   13   15   16   17   18   19   21   22 23   25   26   27   28   30   33   34   35   36   37   38   42   43   46   49   50   53   54   56 59   60   62   63   64   66   68   69   70   71   72   77   81   83   85   87   89   91   92   93 94   95   96   98  103  106  107  108  109  110  111  112  113  114  115  116  117  120  121  123125  126  127  128  130  131  132  133  137  138  139  141  143---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---2022-06-03 16:13:47: Failure - hand contact (25 scenes):---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 11   14   20   29   39   40   41   44   45   47   51   55   57   58   65   67   74   80   82   88102  105  118  124  136---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---2022-06-03 16:13:47: Failure - object drop (17 scenes):---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 24   31   32   52   61   78   79   84   86   97  101  104  119  122  134  140  142---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---2022-06-03 16:13:47: Failure - timeout (9 scenes):---  ---  ---  ---  ---  ---  ---  ---  --- 48   73   75   76   90   99  100  129  135---  ---  ---  ---  ---  ---  ---  ---  ---2022-06-03 16:13:47: Evaluation complete.
  • 《CDLM: Cross-Document Language Modeling》(EMNLP 2021) 

GitHub: github.com/aviclu/CDLM

You can either pretrain by yourself or use the pretrained CDLM model weights and tokenizer files, which are available on HuggingFace.

Then, use:

代码语言:javascript
复制
from transformers import AutoTokenizer, AutoModel# load model and tokenizertokenizer = AutoTokenizer.from_pretrained('biu-nlp/cdlm')model = AutoModel.from_pretrained('biu-nlp/cdlm')
  • 《Continual Learning for Task-Oriented Dialogue Systems》(EMNLP 2021) 

GitHub: github.com/andreamad8/ToDCL

  • 《Torsional Diffusion for Molecular Conformer Generation》(2022)

GitHub: github.com/gcorso/torsional-diffusion

  • 《MMChat: Multi-Modal Chat Dataset on Social Media》(2022) 

GitHub: github.com/silverriver/MMChat

  • 《Can CNNs Be More Robust Than Transformers?》(2022) 

GitHub: github.com/UCSC-VLAA/RobustCNN

  • 《Revealing Single Frame Bias for Video-and-Language Learning》(2022) 

GitHub: github.com/jayleicn/singularity

  • 《Progressive Distillation for Fast Sampling of Diffusion Models》(2022) 

GitHub: github.com/Hramchenko/diffusion_distiller

  • 《Neural Basis Models for Interpretability》(2022) 

GitHub: github.com/facebookresearch/nbm-spam

  • 《Scalable Interpretability via Polynomials》(2022) 

GitHub: github.com/facebookresearch/nbm-spam

  • 《Infinite Recommendation Networks: A Data-Centric Approach》(2022) 

GitHub: github.com/noveens/infinite_ae_cf

  • 《The GatedTabTransformer. An enhanced deep learning architecture for tabular modeling》(2022) 

GitHub: github.com/radi-cho/GatedTabTransformer

Usage:

代码语言:javascript
复制
import torchimport torch.nn as nnfrom gated_tab_transformer import GatedTabTransformer
model = GatedTabTransformer(    categories = (10, 5, 6, 5, 8),      # tuple containing the number of unique values within each category    num_continuous = 10,                # number of continuous values    transformer_dim = 32,               # dimension, paper set at 32    dim_out = 1,                        # binary prediction, but could be anything    transformer_depth = 6,              # depth, paper recommended 6    transformer_heads = 8,              # heads, paper recommends 8    attn_dropout = 0.1,                 # post-attention dropout    ff_dropout = 0.1,                   # feed forward dropout    mlp_act = nn.LeakyReLU(0),          # activation for final mlp, defaults to relu, but could be anything else (selu, etc.)    mlp_depth=4,                        # mlp hidden layers depth    mlp_dimension=32,                   # dimension of mlp layers    gmlp_enabled=True                   # gmlp or standard mlp)
x_categ = torch.randint(0, 5, (1, 5))   # category values, from 0 - max number of categories, in the order as passed into the constructor abovex_cont = torch.randn(1, 10)             # assume continuous values are already normalized individually
pred = model(x_categ, x_cont)print(pred)
  • 《Distract Your Attention: Multi-head Cross Attention Network for Facial Expression Recognition》(2022) 

GitHub: github.com/yaoing/DAN

  • 《Towards Principled Disentanglement for Domain Generalization》(2021)

GitHub: github.com/hlzhang109/DDG

  • 《SoundStream: An End-to-End Neural Audio Codec》(2021)

GitHub: github.com/wesbz/SoundStream

© THE END 

转载请联系本公众号获得授权

计算机视觉研究院学习群等你加入!

计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!

扫码关注

计算机视觉研究院

公众号ID|ComputerVisionGzq

学习群|扫码在主页获取加入方式

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-06-09,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 计算机视觉战队 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Installation
  • Run Experiments
相关产品与服务
图像处理
图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档