前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >为了加速参数收敛。

为了加速参数收敛。

原创
作者头像
serena
发布2022-07-18 10:54:25
4445
发布2022-07-18 10:54:25
举报
文章被收录于专栏:社区的朋友们社区的朋友们

梯度消失(vanishing gradient)和爆炸(exploding gradient)

根据深度学习中参数更新,采用梯度下降策略会运用反向传播,而由于深度学习中网络层数肯定不止一层,根据链式求导法则,我们对浅层参数的求导会有一个连乘操作,前面层的梯度是来自于后面层梯度的乘积。

如果网络层中多层的梯度均大于1,穿过多层后求出的梯度更新会以指数形式增加(前面层的更新速度远远快于后面层)就属于梯度爆炸现象;反之如果多层梯度均小于1,前面层的更新速度远低于后面层,更新特缓慢,那么就属于梯度消失现象。

梯度消失和梯度爆炸均会引起训练不稳定。

zero-centered

很多地方会提出希望网络层的输入是zero-centered零均值化的,包括数据预处理我们也通常会讲输入数据进行一个归一化,那么数据以0为中心有什么好处呢?

为了加速参数收敛。

假设我们的网络定义为:梯度消失(vanishing gradient)和爆炸(exploding gradient)

根据深度学习中参数更新,采用梯度下降策略会运用反向传播,而由于深度学习中网络层数肯定不止一层,根据链式求导法则,我们对浅层参数的求导会有一个连乘操作,前面层的梯度是来自于后面层梯度的乘积。

如果网络层中多层的梯度均大于1,穿过多层后求出的梯度更新会以指数形式增加(前面层的更新速度远远快于后面层)就属于梯度爆炸现象;反之如果多层梯度均小于1,前面层的更新速度远低于后面层,更新特缓慢,那么就属于梯度消失现象。

梯度消失和梯度爆炸均会引起训练不稳定。

zero-centered

很多地方会提出希望网络层的输入是zero-centered零均值化的,包括数据预处理我们也通常会讲输入数据进行一个归一化,那么数据以0为中心有什么好处呢?

为了加速参数收敛。

假设我们的网络定义为:梯度消失(vanishing gradient)和爆炸(exploding gradient)

根据深度学习中参数更新,采用梯度下降策略会运用反向传播,而由于深度学习中网络层数肯定不止一层,根据链式求导法则,我们对浅层参数的求导会有一个连乘操作,前面层的梯度是来自于后面层梯度的乘积。

如果网络层中多层的梯度均大于1,穿过多层后求出的梯度更新会以指数形式增加(前面层的更新速度远远快于后面层)就属于梯度爆炸现象;反之如果多层梯度均小于1,前面层的更新速度远低于后面层,更新特缓慢,那么就属于梯度消失现象。

梯度消失和梯度爆炸均会引起训练不稳定。

zero-centered

很多地方会提出希望网络层的输入是zero-centered零均值化的,包括数据预处理我们也通常会讲输入数据进行一个归一化,那么数据以0为中心有什么好处呢?

为了加速参数收敛。

假设我们的网络定义为:

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 梯度消失(vanishing gradient)和爆炸(exploding gradient)
  • zero-centered
  • zero-centered
  • zero-centered
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档