torch.max
()
torch.max
(input) → Tensor
Returns the maximum value of all elements in the input
tensor.
Parameters
input (Tensor) – the input tensor
Example:
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.6763, 0.7445, -2.2369]])
>>> torch.max(a)
tensor(0.7445)
torch.max
(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor)
Returns a namedtuple (values, indices)
where values
is the maximum value of each row of the input
tensor in the given dimension dim
. And indices
is the index location of each maximum value found (argmax).
If keepdim
is True
, the output tensors are of the same size as input
except in the dimension dim
where they are of size 1. Otherwise, dim
is squeezed (see torch.squeeze()), resulting in the output tensors having 1 fewer dimension than input
.
Parameters
dim
retained or not. Default: False
.
Example:
>>> a = torch.randn(4, 4)
>>> a
tensor([[-1.2360, -0.2942, -0.1222, 0.8475],
[ 1.1949, -1.1127, -2.2379, -0.6702],
[ 1.5717, -0.9207, 0.1297, -1.8768],
[-0.6172, 1.0036, -0.6060, -0.2432]])
>>> torch.max(a, 1)
torch.return_types.max(values=tensor([0.8475, 1.1949, 1.5717, 1.0036]), indices=tensor([3, 0, 0, 1]))
torch.max
(input, other, out=None) → Tensor
Each element of the tensor input
is compared with the corresponding element of the tensor other
and an element-wise maximum is taken.
The shapes of input
and other
don’t need to match, but they must be broadcastable.
Note
When the shapes do not match, the shape of the returned output tensor follows the broadcasting rules.
Parameters
Example:
>>> a = torch.randn(4)
>>> a
tensor([ 0.2942, -0.7416, 0.2653, -0.1584])
>>> b = torch.randn(4)
>>> b
tensor([ 0.8722, -1.7421, -0.4141, -0.5055])
>>> torch.max(a, b)
tensor([ 0.8722, -0.7416, 0.2653, -0.1584])