【导读】Keras是一个由Python编写的开源人工神经网络库,可以作为Tensorflow、和Theano的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化。本系列将教你如何从零开始学Keras,从搭建神经网络到项目实战,手把手教你精通Keras。相关内容参考《Python深度学习》这本书。
前面讲的都是分类问题,其目标是预测输入数据点所对应的单一离散的标签。另一种常见的机器学习问题是回归问题,它预测一个连续值而不是离散的标签,例如,根据气象数据预测明天的气温,或者根据软件说明书预测完成软件项目所需要的时间。
注意:不要将回归问题与 logistic 回归算法混为一谈。令人困惑的是,logistic 回归不是回归算法,而是分类算法。
本节将要预测 20 世纪 70 年代中期波士顿郊区房屋价格的中位数,已知当时郊区的一些数据点,比如犯罪率、当地房产税率等。本节用到的数据集与前面两个例子有一个有趣的区别。它包含的数据点相对较少,只有 506 个,分为 404 个训练样本和 102 个测试样本。输入数据的每个特征(比如犯罪率)都有不同的取值范围。例如,有些特性是比例,取值范围为 0~1;有的取值范围为 1~12;还有的取值范围为 0~100,等等。
import keras
from keras.datasets import boston_housing
(train_data, train_targets), (test_data, test_targets) = boston_housing.load_data()#这里下载有时候会失败,多试几次,不需要访问国外网站
print(train_data.shape)
输出(404, 13)
print(test_data.shape)
输出为:(102, 13)
如你所见,我们有 404 个训练样本和 102 个测试样本,每个样本都有 13 个数值特征,比如人均犯罪率、每个住宅的平均房间数、高速公路可达性等。
目标是房屋价格的中位数,单位是千美元。
房价大都在 10 000~50 000 美元。如果你觉得这很便宜,不要忘记当时是 20 世纪 70 年代中 期,而且这些价格没有根据通货膨胀进行调整。
将取值范围差异很大的数据输入到神经网络中,这是有问题的。网络可能会自动适应这种取值范围不同的数据,但学习肯定变得更加困难。对于这种数据,普遍采用的最佳实践是对每个特征做标准化,即对于输入数据的每个特征(输入数据矩阵中的列),减去特征平均值,再除以标准差,这样得到的特征平均值为 0,标准差为 1。用 Numpy 可以很容易实现标准化。
mean = train_data.mean(axis=0)
train_data -= mean
std = train_data.std(axis=0)
train_data /= std
test_data -= mean
test_data /= std
注意,用于测试数据标准化的均值和标准差都是在训练数据上计算得到的。在工作流程中,你不能使用在测试数据上计算得到的任何结果,即使是像数据标准化这么简单的事情也不行。
由于样本数量很少,我们将使用一个非常小的网络,其中包含两个隐藏层,每层有 64 个单元。一般来说,训练数据越少,过拟合会越严重,而较小的网络可以降低过拟合。
from keras import models
from keras import layers
def build_model():
# Because we will need to instantiate the same model multiple times,(因为需要将同一个模型多次实例化,)
# we use a function to construct it.(所以用一个函数来构建模型)
model = models.Sequential()
model.add(layers.Dense(64, activation='relu',
input_shape=(train_data.shape[1],)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(1))
model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
return model
网络的最后一层只有一个单元,没有激活,是一个线性层。这是标量回归(标量回归是预测单一连续值的回归)的典型设置。添加激活函数将会限制输出范围。例如,如果向最后一层添加 sigmoid 激活函数,网络只能学会预测 0~1 范围内的值。这里最后一层是纯线性的,所以网络可以学会预测任意范围内的值。
注意,编译网络用的是 mse 损失函数,即均方误差(MSE,mean squared error),预测值与目标值之差的平方。这是回归问题常用的损失函数。
在训练过程中还监控一个新指标:平均绝对误差(MAE,mean absolute error)。它是预测值与目标值之差的绝对值。比如,如果这个问题的 MAE 等于 0.5,就表示你预测的房价与实际价格平均相差 500 美元。
为了在调节网络参数(比如训练的轮数)的同时对网络进行评估,你可以将数据划分为训 练集和验证集,正如前面例子中所做的那样。但由于数据点很少,验证集会非常小(比如大约100 个样本)。因此,验证分数可能会有很大波动,这取决于你所选择的验证集和训练集。也就是说,验证集的划分方式可能会造成验证分数上有很大的方差,这样就无法对模型进行可靠的评估。在这种情况下,最佳做法是使用 K 折交叉验证。这种方法将可用数据划分为 K 个分区(K 通常取 4 或 5),实例化 K 个相同的模型,将每个模型在 K-1 个分区上训练,并在剩下的一个分区上进行评估。模型的验证分数等于 K 个验证分数的平均值。
这种代码的实现很简单。
import numpy as np
k = 4
num_val_samples = len(train_data) // k
num_epochs = 100
all_scores = []
for i in range(k):
print('processing fold #', i)
# Prepare the validation data: data from partition # k(准备验证数据:第 k 个分区的数据)
val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]
# Prepare the training data: data from all other partitions(准备训练数据:其他所有分区的数据)
partial_train_data = np.concatenate(
[train_data[:i * num_val_samples],
train_data[(i + 1) * num_val_samples:]],
axis=0)
partial_train_targets = np.concatenate(
[train_targets[:i * num_val_samples],
train_targets[(i + 1) * num_val_samples:]],
axis=0)
# Build the Keras model (already compiled)(构建 Keras 模型(已编译))
model = build_model()
# Train the model (in silent mode, verbose=0)(训练模型(静默模式,)
model.fit(partial_train_data, partial_train_targets,
epochs=num_epochs, batch_size=1, verbose=0)
# Evaluate the model on the validation data(在验证数据上评估模型)
val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0)
all_scores.append(val_mae)
输出为:
processing fold # 0
processing fold # 1
processing fold # 2
processing fold # 3
每次运行模型得到的验证分数有很大差异,从 2.1 到 2.9 不等。平均分数(2.4)是比单一分数更可靠的指标——这就是 K 折交叉验证的关键。在这个例子中,预测的房价与实际价格平均相差 2400 美元,考虑到实际价格范围在 10 000~50 000 美元,这一差别还是很大的。
我们让训练时间更长一点,达到 500 个轮次。为了记录模型在每轮的表现,我们需要修改训练循环,以保存每轮的验证分数记录。
from keras import backend as K
# Some memory clean-up
K.clear_session()
num_epochs = 500
all_mae_histories = []
for i in range(k):
print('processing fold #', i)
# Prepare the validation data: data from partition # k(准备验证数据:第 k 个分区的数据)
val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]
# Prepare the training data: data from all other partitions(准备训练数据:其他所有分区的数据)
partial_train_data = np.concatenate(
[train_data[:i * num_val_samples],
train_data[(i + 1) * num_val_samples:]],
axis=0)
partial_train_targets = np.concatenate(
[train_targets[:i * num_val_samples],
train_targets[(i + 1) * num_val_samples:]],
axis=0)
# Build the Keras model (already compiled)(构建 Keras 模型(已编译))
model = build_model()
# Train the model (in silent mode, verbose=0)(训练模型(静默模式,verbose=0))
history = model.fit(partial_train_data, partial_train_targets,
validation_data=(val_data, val_targets),
epochs=num_epochs, batch_size=1, verbose=0)
mae_history = history.history['val_mean_absolute_error']
all_mae_histories.append(mae_history)
输出为:
processing fold # 0
processing fold # 1
processing fold # 2
processing fold # 3
然后你可以计算每个轮次中所有折 MAE 的平均值。
average_mae_history = [
np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)]
import matplotlib.pyplot as plt
plt.plot(range(1, len(average_mae_history) + 1), average_mae_history)
plt.xlabel('Epochs')
plt.ylabel('Validation MAE')
plt.show()
因为纵轴的范围较大,且数据方差相对较大,所以难以看清这张图的规律。我们来重新绘制一张图。
删除前 10 个数据点,因为它们的取值范围与曲线上的其他点不同。 将每个数据点替换为前面数据点的指数移动平均值,以得到光滑的曲线。
def smooth_curve(points, factor=0.9):
smoothed_points = []
for point in points:
if smoothed_points:
previous = smoothed_points[-1]
smoothed_points.append(previous * factor + point * (1 - factor))
else:
smoothed_points.append(point)
return smoothed_points
smooth_mae_history = smooth_curve(average_mae_history[10:])
plt.plot(range(1, len(smooth_mae_history) + 1), smooth_mae_history)
plt.xlabel('Epochs')
plt.ylabel('Validation MAE')
plt.show()
从图可以看出,验证 MAE 在 80 轮后不再显著降低,之后就开始过拟合。
完成模型调参之后(除了轮数,还可以调节隐藏层大小),你可以使用最佳参数在所有训练数据上训练最终的生产模型,然后观察模型在测试集上的性能。
# Get a fresh, compiled model.
model = build_model()
# Train it on the entirety of the data.
model.fit(train_data, train_targets,
epochs=80, batch_size=16, verbose=0)
test_mse_score, test_mae_score = model.evaluate(test_data, test_targets)
print(test_mae_score)
输出为:
2.686123801212685
你预测的房价还是和实际价格相差约 2550 美元。
[1]《Python深度学习》François Chollet[美]著[2]https://github.com/fengdu78/machine_learning_beginner/tree/master/deep-learning-with-python-notebooks