前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >BN层代码实现_无代码

BN层代码实现_无代码

作者头像
全栈程序员站长
发布2022-11-04 16:17:15
1.2K0
发布2022-11-04 16:17:15
举报
文章被收录于专栏:全栈程序员必看

Batch Normalization

开发环境

  • python–3.7
  • torch–1.8+cu101
  • torchsummary
  • torchvision–0.6.1+cu101
  • PIL
  • numpy
  • opencv-python
  • pillow

项目代码结构

在这里插入图片描述
在这里插入图片描述

src文件夹存储了带有BN的FC训练文件、基于初始化的带BN的FC训练文件以及BN在训练阶段的操作。 tools存储了通用数据集:生成虚拟数据集和FC模型。

生成虚拟数据程序

代码语言:javascript
复制
import numpy as np
import torch
def generate_data(num_samples):
# training data
x = np.linspace(-7, 10, num_samples)[:, np.newaxis]  # 在-7到10区间内等距离划分num_samples个数据,并添加一维,生成二维数据。
noise = np.random.normal(0, 2, x.shape)  # 添加噪声
y = np.square(x) - 5 + noise    # y与x的关系
# testing data
test_x = np.linspace(-7, 10, 200)[:, np.newaxis]
noise = np.random.normal(0, 2, test_x.shape)
test_y = np.square(test_x) - 5 + noise
# to tensor
train_x = torch.from_numpy(x).float()
train_y = torch.from_numpy(y).float()
test_x = torch.from_numpy(test_x).float()
test_y = torch.from_numpy(test_y).float()
return train_x, train_y, test_x, test_y

神经网络构建

代码语言:javascript
复制
class Net(nn.Module):
def __init__(self, n_hidden, act_func, batch_normalization=False):
super(Net, self).__init__()
self.do_bn = batch_normalization
self.fcs = []
self.bns = []
self.bn_input = nn.BatchNorm1d(1, momentum=0.5)
self.act_func = act_func
self.n_hidden = n_hidden
for i in range(n_hidden):
input_size = 1 if i == 0 else 10
fc = nn.Linear(input_size, 10)
setattr(self, 'fc%i' % i, fc)
self._set_init(fc)
self.fcs.append(fc)
if self.do_bn:
bn = nn.BatchNorm1d(10, momentum=0.5)
setattr(self, 'bn%i' % i, bn)
self.bns.append(bn)
self.predict = nn.Linear(10, 1)
self._set_init(self.predict)
def _set_init(self, layer):
nn.init.normal_(layer.weight, mean=0., std=1.)
nn.init.constant_(layer.bias, -0.2)
def forward(self, x):
pre_activation = [x]
if self.do_bn:
x = self.bn_input(x)
layer_input = [x]
for i in range(self.n_hidden):
x = self.fcs[i](x)
pre_activation.append(x)
if self.do_bn:
x = self.bns[i](x)
x = self.act_func(x)
layer_input.append(x)
out = self.predict(x)
return out, layer_input, pre_activation

带初始化模型的神经网络构建

代码语言:javascript
复制
class MLP(nn.Module):
def __init__(self, neural_num, layers=100, do_bn=False):
super(MLP, self).__init__()
self.linears = nn.ModuleList([nn.Linear(neural_num, neural_num, bias=False) for i in range(layers)])
self.bns = nn.ModuleList([nn.BatchNorm1d(neural_num) for i in range(layers)])
self.neural_num = neural_num
self.do_bn = do_bn
def forward(self, x):
for (i, linear), bn in zip(enumerate(self.linears), self.bns):
x = linear(x)
if self.do_bn:
x = bn(x)
x = torch.relu(x)
if torch.isnan(x.std()):
print("output is nan in {} layers".format(i))
break
print("layers:{}, std:{}".format(i, x.std().item()))
return x
def initialize(self, mode, std_init=1):
for m in self.modules():
if isinstance(m, nn.Linear):
if mode == "normal":
nn.init.normal_(m.weight.data, std=std_init)
elif mode == "kaiming":
nn.init.kaiming_normal_(m.weight.data)
else:
print("不支持{}输入".format(mode))

带BN的FC网络和不带BN的FC网络对比

代码语言:javascript
复制
import torch
import torch.utils.data as Data
import matplotlib.pyplot as plt
import numpy as np
from tools.common_tools import generate_data, Net
torch.manual_seed(1)
np.random.seed(1)
def plot_histogram(l_in, l_in_bn, pre_ac, pre_ac_bn):
for i, (ax_pa, ax_pa_bn, ax, ax_bn) in enumerate(zip(axs[0, :], axs[1, :], axs[2, :], axs[3, :])):
[a.clear() for a in [ax_pa, ax_pa_bn, ax, ax_bn]]
if i == 0:
p_range = (-7, 10)
the_range = (-7, 10)
else:
p_range = (-4, 4)
the_range = (-1, 1)
ax_pa.set_title('L' + str(i))
ax_pa.hist(pre_ac[i].data.numpy().ravel(), bins=10, range=p_range, color='#FF9359', alpha=0.5)
ax_pa_bn.hist(pre_ac_bn[i].data.numpy().ravel(), bins=10, range=p_range, color='#74BCFF', alpha=0.5)
ax.hist(l_in[i].data.numpy().ravel(), bins=10, range=the_range, color='#FF9359')
ax_bn.hist(l_in_bn[i].data.numpy().ravel(), bins=10, range=the_range, color='#74BCFF')
for a in [ax_pa, ax, ax_pa_bn, ax_bn]:
a.set_yticks(())
a.set_xticks(())
ax_pa_bn.set_xticks(p_range)
ax_bn.set_xticks(the_range)
axs[0, 0].set_ylabel('PreAct')
axs[1, 0].set_ylabel('BN PreAct')
axs[2, 0].set_ylabel('Act')
axs[3, 0].set_ylabel('BN Act')
plt.suptitle("Activation:{} epoch:{}/{}".format(act_name, epoch, EPOCH))
plt.pause(0.05)
if __name__ == "__main__":
act_name = "ReLU"
# act_name = "Tanh"
# act_name = "Sigmoid"
activations = { 
"ReLU": torch.relu, "Tanh": torch.tanh, "Sigmoid": torch.sigmoid}
ACTIVATION = activations[act_name]
# config
EPOCH = 12
LR = 0.03
N_HIDDEN = 8
N_SAMPLES = 2000
BATCH_SIZE = 64
B_INIT = -0.2  # use a bad bias constant initializer
# 1. 生成虚假数据
train_x, train_y, test_x, test_y = generate_data(N_SAMPLES)
train_dataset = Data.TensorDataset(train_x, train_y)
train_loader = Data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2)
# show data
plt.scatter(train_x.numpy(), train_y.numpy(), c='#FF9359', s=50, alpha=0.2, label='train')
plt.legend(loc='upper left')
# 2. 创建网络/loss/优化器
nets = [Net(N_HIDDEN, ACTIVATION, batch_normalization=False), Net(N_HIDDEN, ACTIVATION, batch_normalization=True)]
loss_func = torch.nn.MSELoss()
opts = [torch.optim.Adam(net.parameters(), lr=LR) for net in nets]
# 3. 训练,绘图
f, axs = plt.subplots(4, N_HIDDEN + 1, figsize=(10, 5))
plt.ion()  # something about plotting
plt.show()
losses = [[], []]  # recode loss for two networks
for epoch in range(EPOCH):
print('Epoch: {}/{}'.format(epoch, EPOCH))
# 记录数据
layer_inputs, pre_acts = [], []
for net, l in zip(nets, losses):
net.eval()  # set eval mode to fix moving_mean and moving_var
pred, layer_input, pre_act = net(test_x)
l.append(loss_func(pred, test_y).data.item())
layer_inputs.append(layer_input)
pre_acts.append(pre_act)
net.train()  # free moving_mean and moving_var
plot_histogram(*layer_inputs, *pre_acts)  # plot histogram
# 训练更新模型
for step, (b_x, b_y) in enumerate(train_loader):
for net, opt in zip(nets, opts):  # train for each network
pred, _, _ = net(b_x)
loss = loss_func(pred, b_y)
opt.zero_grad()
loss.backward()
opt.step()  # it will also learns the parameters in Batch Normalization
plt.ioff()
# plot training loss
plt.figure(2)
plt.plot(losses[0], c='#FF9359', lw=3, label='Original')
plt.plot(losses[1], c='#74BCFF', lw=3, label='Batch Normalization')
plt.xlabel('step')
plt.ylabel('test loss')
plt.ylim((0, 2000))
plt.legend(loc='best')
# evaluation
# set net to eval mode to freeze the parameters in batch normalization layers
[net.eval() for net in nets]  # set eval mode to fix moving_mean and moving_var
preds = [net(test_x)[0] for net in nets]
plt.figure(3)
plt.plot(test_x.data.numpy(), preds[0].data.numpy(), c='#FF9359', lw=4, label='Original')
plt.plot(test_x.data.numpy(), preds[1].data.numpy(), c='#74BCFF', lw=4, label='Batch Normalization')
plt.scatter(test_x.data.numpy(), test_y.data.numpy(), c='r', s=50, alpha=0.2, label='train')
plt.legend(loc='best')
plt.show()

不同初始化方式带BN的网络模型对比

代码语言:javascript
复制
import torch
import numpy as np
import torch.nn as nn
torch.manual_seed(1)
np.random.seed(1)
class MLP(nn.Module):
def __init__(self, neural_num, layers=100, do_bn=False):
super(MLP, self).__init__()
self.linears = nn.ModuleList([nn.Linear(neural_num, neural_num, bias=False) for i in range(layers)])
self.bns = nn.ModuleList([nn.BatchNorm1d(neural_num) for i in range(layers)])
self.neural_num = neural_num
self.do_bn = do_bn
def forward(self, x):
for (i, linear), bn in zip(enumerate(self.linears), self.bns):
x = linear(x)
if self.do_bn:
x = bn(x)
x = torch.relu(x)
if torch.isnan(x.std()):
print("output is nan in {} layers".format(i))
break
print("layers:{}, std:{}".format(i, x.std().item()))
return x
def initialize(self, mode, std_init=1):
for m in self.modules():
if isinstance(m, nn.Linear):
if mode == "normal":
nn.init.normal_(m.weight.data, std=std_init)
elif mode == "kaiming":
nn.init.kaiming_normal_(m.weight.data)
else:
print("不支持{}输入".format(mode))
if __name__ == "__main__":
neural_nums = 256
layer_nums = 100
batch_size = 16
net = MLP(neural_nums, layer_nums, do_bn=False)   # 1. 无初始化; # 2. normal_初始化; # 3。 kaiming初始化
# net = MLP(neural_nums, layer_nums, do_bn=True) # 4. BN+无初始化; 5. BN + normal; 6. BN + kaiming, 7. BN+1000
# net.initialize("normal", std_init=1)
# net.initialize("normal", std_init=1000)
net.initialize("kaiming")
inputs = torch.randn((batch_size, neural_nums))  # normal: mean=0, std=1
output = net(inputs)
print(output)

BN层原理及代码

在这里插入图片描述
在这里插入图片描述
  • 训练阶段:均值和标准差通过指数滑动平均统计得来的, γ \gamma γ和 β \beta β通过梯度反向传播不断更新
  • 测试阶段:均值和标准差是固定的, γ \gamma γ和 β \beta β也是固定的.
  • 指数滑动平均计算公式 m v t = d e c a y ∗ m v t − 1 + ( 1 − d e c a y ) ∗ a t mv_t=decay*mv_{t-1}+(1-decay)*a_t mvt​=decay∗mvt−1​+(1−decay)∗at​
  • pytorch中的指数滑动平均计算公式 m v t = ( 1 − m o m e n t u m ) ∗ m v t − 1 + m o m e n t u m ∗ a t mv_t=(1-momentum)*mv_{t-1}+momentum*a_t mvt​=(1−momentum)∗mvt−1​+momentum∗at​ pytorch中的BN层
代码语言:javascript
复制
import torch.nn as nn
# 1dBN
nn.BatchNorm1d
# 2d
nn.BatchNorm2d
# 3d
nn.BatchNorm3d
# 参数
_init_(self, num_features,
eps = 1e-5,
momentum = 0.1, 
affine = True,
track_running_stats = True)
""" num_features: 一个样本特征数量 eps: 分母修正项 momentum: 指数加权平均估计当前mean/var affine:是否需要affine transform track_running_stats:是否需要统计mean/var """

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/182025.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年10月14日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Batch Normalization
  • 开发环境
  • 项目代码结构
  • 生成虚拟数据程序
  • 神经网络构建
  • 带初始化模型的神经网络构建
  • 带BN的FC网络和不带BN的FC网络对比
  • 不同初始化方式带BN的网络模型对比
  • BN层原理及代码
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档